Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 87(5): 1358-1367, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656153

RESUMEN

cis-12-oxo-Phytodieneoic acid-α-monoglyceride (1) was isolated from Arabidopsis thaliana. The chemical structure of 1 was elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by FDMS and HRFDMS data. The absolute configuration of the cis-OPDA moiety in 1 was determined by comparison of 1H NMR spectra and ECD measurements. With respect to the absolute configuration of the ß-position of the glycerol backbone, the 2:3 ratio of (S) to (R) was determined by making ester-bonded derivatives with (R)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride and comparing 1H NMR spectra. Wounding stress did not increase endogenous levels of 1, and it was revealed 1 had an inhibitory effect of A. thaliana post germination growth. Notably, the endogenous amount of 1 was higher than the amounts of (+)-7-iso-jasmonic acid and (+)-cis-OPDA in intact plants. 1 also showed antimicrobial activity against Gram-positive bacteria, but jasmonic acid did not. It was also found that α-linolenic acid-α-monoglyceride was converted into 1 in the A. thaliana plant, which implied α-linolenic acid-α-monoglyceride was a biosynthetic intermediate of 1.


Asunto(s)
Arabidopsis , Estructura Molecular , Monoglicéridos/farmacología , Monoglicéridos/química , Ciclopentanos/farmacología , Ciclopentanos/química , Oxilipinas/química , Oxilipinas/farmacología , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/aislamiento & purificación , Germinación/efectos de los fármacos
2.
Chembiochem ; 25(1): e202300593, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37934005

RESUMEN

Researchers have established that (+)-7-iso-jasmonic acid ((+)-7-iso-JA) is an intermediate in the production of cis-jasmone (CJ); however, the biosynthetic pathway of CJ has not been fully described. Previous reports stated that CJ, a substructure of pyrethrin II produced by pyrethrum (Tanacetum cinerariifolium), is not biosynthesized through this biosynthetic pathway. To clarify the ambiguity, stable isotope-labelled jasmonates were synthesized, and compounds were applied to apple mint (Mentha suaveolens) via air propagation. The results showed that cis-jasmone is not generated from intermediate (+)-7-iso-JA, and (+)-7-iso-JA is not produced from 3,7-dideydro-JA (3,7-ddh-JA); however, 3,7-didehydro-JA and 4,5-didehydro-7-iso-JA were converted into CJ and JA, respectively.


Asunto(s)
Vías Biosintéticas , Chrysanthemum cinerariifolium , Oxilipinas/química , Chrysanthemum cinerariifolium/metabolismo , Ciclopentanos/química
3.
Environ Sci Pollut Res Int ; 30(32): 79161-79170, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37284952

RESUMEN

Long-chain fatty acids (LCFAs) in leaves have attracted attention as nutritious phytochemicals and olfactory signals that influence the behavior and growth of herbivorous insects. In recognition of the negative effects of increasing tropospheric ozone (O3) levels on plants, LCFAs can be altered through peroxidation by O3. However, how elevated O3 changes the amount and composition of LCFAs in field-grown plants is still unknown. We investigated palmitic, stearic, oleic, linoleic, linolenic LCFAs in the two leaf types (spring and summer) and two stages (early and late stage after expansion) of Japanese white birch (Betula platyphylla var. japonica) after a multi-year O3 exposure on the field. Summer leaves exhibited a distinct composition of LCFAs under elevated O3 at the early stage, whereas both stages of spring leaves did not exhibit significant changes in LCFAs composition by elevated O3. In the spring leaves, the amounts of saturated LCFAs significantly increased at the early stage, however, the amount of total, palmitic, and linoleic acids at the late stage were significantly decreased by elevated O3. Summer leaves had a lower amount of all LCFAs at both leaf stages. Regarding the early stage of summer leaves, the lower amount of LCFAs under elevated O3 was possibly due to O3-suppressed photosynthesis in the current spring leaves. Furthermore, the decrease ratio of spring leaves over time was significantly increased by elevated O3 in all LCFAs, whereas summer leaves did not exhibit such an effect. These findings suggest that further studies should be conducted to reveal the biological functions of LCFAs under elevated O3, considering the leaf type- and stage-dependent changes of LCFAs.


Asunto(s)
Betula , Ácidos Grasos , Ozono , Hojas de la Planta , Betula/química , Betula/metabolismo , Ozono/análisis , Fotosíntesis/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Japón , Ácidos Grasos/metabolismo , Estaciones del Año
4.
Biosci Biotechnol Biochem ; 85(12): 2378-2382, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34726243

RESUMEN

New information is being accumulated for plant-derived oxylipins, such as jasmonic acid (JA) amino acid conjugates. However, these compounds have not being examined for their activity in promoting potato tuber formation. It was found that (-)-JA had the highest activity followed cis-(-)-OPDA, (+)-4, 5-didehydroJA, cis-(+)-OPDA-l-Ile, and (-)-JA-l-Ile, -Leu, -Phe, -Val, although iso-OPDA and 3,7-didehydroJA did not exhibit activity.


Asunto(s)
Ciclopentanos , Oxilipinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...