Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 72(18): 6490-6509, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34100923

RESUMEN

The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.


Asunto(s)
Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Botrytis , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mycorrhiza ; 29(5): 459-473, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31410554

RESUMEN

Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.


Asunto(s)
Genotipo , Glycine max/metabolismo , Micorrizas/metabolismo , Simbiosis/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Glycine max/genética , Glycine max/microbiología
3.
Food Technol Biotechnol ; 55(2): 266-275, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28867958

RESUMEN

Allium sp. vegetables are widely consumed for their characteristic flavour. Additionally, their consumption may provide protection against cardiovascular disease due to their antiplatelet and antioxidant activities. Although antiplatelet and antioxidant activities in Allium sp. are generally recognised, comparative studies of antiplatelet and antioxidant potency among the main Allium vegetable species are lacking. Also, the relationship between organosulfur and phenolic compounds and these biological activities has not been well established. In this study, the in vitro antiplatelet and antioxidant activities of the most widely consumed Allium species are characterised and compared. The species total organosulfur and phenolic content, and the HPLC profiles of 11 phenolic compounds were characterised and used to investigate the relationship between these compounds and antiplatelet and antioxidant activities. Furthermore, antiplatelet activities in chives and shallot have been characterised for the first time. Our results revealed that the strongest antiplatelet agents were garlic and shallot, whereas chives had the highest antioxidant activity. Leek and bunching onion had the weakest both biological activities. Significantly positive correlations were found between the in vitro antiplatelet activity and total organosulfur (R=0.74) and phenolic (TP) content (R=0.73), as well as between the antioxidant activity and TP (R=0.91) and total organosulfur content (R=0.67). Six individual phenolic compounds were associated with the antioxidant activity, with catechin, epigallocatechin and epicatechin gallate having the strongest correlation values (R>0.80). Overall, our results suggest that both organosulfur and phenolic compounds contribute similarly to Allium antiplatelet activity, whereas phenolics, as a whole, are largely responsible for antioxidant activity, with broad variation observed among the contributions of individual phenolic compounds.

4.
Data Brief ; 11: 208-213, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28243615

RESUMEN

We present data on absorption spectra (400-540 nm) and concentration of phenolic compounds quercetin, myricetin, kaempferol, rutin, catechin, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), in yellow, red and white onions. These data are related to the article entitled "Variability in spectrophotometric pyruvate analyses for predicting onion pungency and nutraceutical value" (Beretta et al., 2017) [1]. Given the relevance of pyruvate determinations for estimating onion pungency and functional value, it is important to identify compounds that can interfere with pyruvate determinations when using two previously published analytical procedures, namely Schwimmer and Weston (1961) (SW) [2] and Anthon and Barret (2002) (AB) [3], which are based on spectrophotometry and light-absorbance at 420 nm and 515 nm, respectively. The data presented in this article are absorption spectra for 7 onion phenolic compounds in the range 400-540 nm, which include wavelengths used by the two pyruvate analytical methods (Schwimmer and Weston, 1961; Anthon and Barret, 2002) [2,3] that were compared in our reference article (Beretta et al., 2017) [1]. Additionally, bulb content data for these 7 phenolic compounds in onion cultivars and F2 progenies with different bulb color were included to allow further analyses.

5.
Food Chem ; 224: 201-206, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159256

RESUMEN

Onion pyruvate concentration is used as a predictor of flavor intensity and nutraceutical value. The protocol of Schwimmer and Weston (SW) (1961) is the most widespread methodology for estimating onion pyruvate. Anthon and Barret (AB) (2003) proposed modifications to this procedure. Here, we compared these spectrophotometry-based procedures for pyruvate analysis using a diverse collection of onion cultivars. The SW method always led to over-estimation of pyruvate levels in colored, but not in white onions, by up to 65%. Identification of light-absorbance interfering compounds was performed by spectrophotometry and HPLC analysis. Interference by quercetin and anthocyanins, jointly, accounted for more than 90% of the over-estimation of pyruvate. Pyruvate determinations according to AB significantly reduced absorbance interference from compounds other than pyruvate. This study provides evidence about the mechanistic basis underlying differences between the SW and AB methods for indirect assessment of onion flavor and nutraceutical value.


Asunto(s)
Cebollas/química , Ácido Pirúvico/análisis , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Espectrofotometría , Gusto
6.
J Exp Bot ; 64(8): 2449-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23599271

RESUMEN

Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato.


Asunto(s)
Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Ascórbico/metabolismo , Pared Celular/química , Clonación Molecular , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Genes de Plantas/genética , Genes de Plantas/fisiología , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Microscopía Confocal , Pectinas/análisis , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos Silenciadores Transcripcionales/genética , Elementos Silenciadores Transcripcionales/fisiología , Ácidos Urónicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...