Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956582

RESUMEN

In this study, the mechano-chemical properties of aromatic polymer polyetheretherketone (PEEK) samples, irradiated by high energy electrons at 200 and 400 kGy doses, were investigated by Nanoindentation, Brillouin light scattering spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Irradiating electrons penetrated down to a 5 mm depth inside the polymer, as shown numerically by the monte CArlo SImulation of electroN trajectory in sOlids (CASINO) method. The irradiation of PEEK samples at 200 kGy caused the enhancement of surface roughness by almost threefold. However, an increase in the irradiation dose to 400 kGy led to a decrease in the surface roughness of the sample. Most likely, this was due to the processes of erosion and melting of the sample surface induced by high dosage irradiation. It was found that electron irradiation led to a decrease of the elastic constant C11, as well as a slight decrease in the sample's hardness, while the Young's elastic modulus decrease was more noticeable. An intrinsic bulk property of PEEK is less radiation resistance than at its surface. The proportionality constant of Young's modulus to indentation hardness for the pristine and irradiated samples were 0.039 and 0.038, respectively. In addition, a quasi-linear relationship between hardness and Young's modulus was observed. The degradation of the polymer's mechanical properties was attributed to electron irradiation-induced processes involving scission of macromolecular chains.

2.
Materials (Basel) ; 15(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955265

RESUMEN

Despite the impressive performance and incredible promise for a variety of applications, the wide-scale commercialization of graphene is still behind its full potential. One of the main challenges is related to preserving graphene's unique properties upon transfer onto practically desirable substrates. In this work, few-layer graphene sheets deposited via liquid-phase transfer from copper onto a quartz substrate have been studied using a suite of experimental techniques, including scanning electron microscopy (SEM), Raman spectroscopy, admittance spectroscopy, and four-point probe electrical measurements. SEM measurements suggest that the transfer of graphene from copper foil to quartz using the aqueous solution of ammonium persulfate was accompanied by unintentional etching of the entire surface of the quartz substrate and, as a result, the formation of microscopic facet structures covering the etched surface of the substrate. As revealed by Raman spectroscopy and the electrical measurements, the transfer process involving the etching of the copper foil in a 0.1 M solution of (NH4)2S2O8 resulted in its p-type doping. This was accompanied by the appearance of an electronic gap of 0.022 eV, as evidenced by the Arrhenius analysis. The observed increase in the conductance of the samples with temperature can be explained by thermally activated carrier transport, dominating the scattering processes.

3.
Membranes (Basel) ; 12(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35054553

RESUMEN

In this paper, we demonstrate a new, highly efficient method of crosslinking multilayer graphene, and create nanopores in it by its irradiation with low-energy argon cluster ions. Irradiation was performed by argon cluster ions with an acceleration energy E ≈ 30 keV, and total fluence of argon cluster ions ranging from 1 × 109 to 1 × 1014 ions/cm2. The results of the bombardment were observed by the direct examination of traces of argon-cluster penetration in multilayer graphene, using high-resolution transmission electron microscopy. Further image processing revealed an average pore diameter of approximately 3 nm, with the predominant size corresponding to 2 nm. We anticipate that a controlled cross-linking process in multilayer graphene can be achieved by appropriately varying irradiation energy, dose, and type of clusters. We believe that this method is very promising for modulating the properties of multilayer graphene, and opens new possibilities for creating three-dimensional nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA