Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(5): 706-713, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38746881

RESUMEN

Herein, we describe the design, synthesis, and in vitro biological evaluation of HO-1 inducers endowed with cytotoxic effects mediated by ferroptosis activation. Using the natural HO-1 inducer caffeic acid phenethyl ester (CAPE) as a chemical scaffold, new derivatives were synthesized by performing modifications in the cathecol moiety and in the phenethyl ester aromatic ring. Biological assays aimed at evaluating an imbalanced activity of ferroptosis key players identified that 2-(1H-indol-3-yl)ethyl cinnamate (compound 24) possesses improved anticancer activity toward the MDA-MB 231 triple negative breast cancer cell line when compared to CAPE. Increased ROS and LOOH levels, reduced GSH levels, imbalanced mitochondrial activity, and restored cell viability after ferrostatin-1 treatment suggested a ferroptotic mechanism of action, which did not involve GPX4 inhibition. Compound 24 represents an intriguing hit compound useful for the identification of novel ferroptosis inducers.

2.
J Enzyme Inhib Med Chem ; 39(1): 2337191, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38634597

RESUMEN

Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Fluorouracilo , Humanos , Masculino , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/farmacología , Hemo-Oxigenasa 1/antagonistas & inhibidores
3.
J Drug Target ; 32(4): 433-443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385752

RESUMEN

Traditional treatments for head and neck squamous cell carcinoma (HNSCC) such as surgery, radiation therapy, and chemotherapy, often have severe side effects. Local delivery of chemotherapeutic agents can be a promising approach to minimise systemic toxicity and improve efficacy. Lauric acid (LA), was explored as a novel injectable thermosensitive drug reservoir as a depot for sustained release of anticancer drugs to treat HNSCC. LA was characterised in terms of melting temperature and gelation time. The efficacy of LA-based drug formulations was tested in vitro in a HNSCC cell line and in vivo in a mouse model of HNSCC. LA was modified to have a melting point of 38.5 °C and a gelation time of 40 s at 37.5 °C, rendering it suitable for injection at body temperature. LA- based doxorubicin (DOXO) formulation showed slow release with a maximum of 18% release after 3 days. The in vitro study showed that LA enhanced the cytotoxic effect of DOXO. LA combined with DOXO prevented tumour progression and LA alone significantly reduced the original tumour volume compared to the untreated control group. These findings confirmed that LA can function as practical carrier for the local delivery of chemotherapeutics and provides a safe and simple strategy for the delivery of hydrophobic anticancer drugs and warrant further testing in clinical trials.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Ácidos Láuricos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
4.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891937

RESUMEN

Neuropathic pain is a type of pain that persists for a long time and becomes pathological. Additionally, the anxiodepressive disorders derived from neuropathic pain are difficult to palliate with the current treatments and need to be resolved. Then, using male mice with neuropathic pain provoked by chronic constriction of the sciatic nerve (CCI), we analyzed and compared the analgesic actions produced by three new heme oxygenase 1 (HO-1) inducers, 1m, 1b, and 1a, with those performed by dimethyl fumarate (DMF). Their impact on the anxiety- and depressive-like comportments and the expression of the inflammasome NLRP3, Nrf2, and some antioxidant enzymes in the dorsal root ganglia (DRG) and amygdala (AMG) were also investigated. Results revealed that the administration of 1m, 1b, and DMF given orally for four days inhibited the allodynia and hyperalgesia caused by CCI, while 1a merely reduced the mechanical allodynia. However, in the first two days of treatment, the antiallodynic effects produced by 1m were higher than those of 1a and DMF, and its antihyperalgesic actions were greater than those produced by 1b, 1a, and DMF, revealing that 1m was the most effective compound. At four days of treatment, all drugs exerted anxiolytic and antidepressant effects, decreased the NLRP3 levels, and increased/normalized the Nrf2, HO-1, and superoxide dismutase 1 levels in DRG and AMG. Data indicated that the dual modulation of the antioxidant and inflammatory pathways produced by these compounds, especially 1m, is a new promising therapeutic approach for neuropathic pain and related emotional illnesses.

5.
ChemMedChem ; 18(8): e202300047, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36756924

RESUMEN

In this work, we extend the concept of 5-fluorouracil/heme oxygenase 1 (5-FU/HO-1) inhibitor hybrid as an effective strategy for enhancing 5-FU-based anticancer therapies. For this purpose, we designed and synthesized new mutual prodrugs, named SI 1/20 and SI 1/22, in which the two active parent drugs (i. e., 5-FU and an imidazole-based HO-1 inhibitor) were connected through an easily cleavable succinic linker. Experimental hydrolysis rate, and in silico ADMET predictions were indicative of good drug-likeness and pharmacokinetic properties. Novel hybrids significantly reduced the viability of prostate DU145 cancer cells compared to the parent compounds 5-FU and HO-1 inhibitor administered alone or in combination. Interestingly, both compounds showed statistically significant lower toxicity, than 5-FU at the same dose, against non-tumorigenic human benign prostatic hyperplasia (BPH-1) cell line. Moreover, the newly synthesized mutual prodrugs inhibited the HO-1 activity both in a cell-free model and in vitro, as well as downregulated the HO-1 expression and increased the reactive oxygen species (ROS) levels.


Asunto(s)
Profármacos , Neoplasias de la Próstata , Masculino , Humanos , Fluorouracilo/farmacología , Hemo-Oxigenasa 1 , Próstata/metabolismo , Profármacos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Línea Celular , Imidazoles/farmacología
7.
Bioorg Med Chem ; 73: 117032, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202063

RESUMEN

The overexpression of σ receptors (σRs) in various types of tumors has prompted a deep investigation of their role in cancer pathophysiology. Consequently, σR ligands have been widely studied in vitro and in vivo for their antiproliferative effects as a novel potential class of chemotherapeutic agents, both alone and in combination with other anticancer drugs. A growing body of evidence highlights that σR ligands can inhibit cancer cells' survival, migration, and proliferation, thanks to the modulation of a wide panel of tumorigenic pathways. In addition to their antitumor activity, σR ligands are gaining momentum as radiotracers for PET and SPECT imaging applications. The purpose of this review is to report on recent advances in the development of σR ligands. In particular, herein, we describe the structure-activity relationships of structurally diverse mixed σ1R/σ2R ligands that showed promising antitumor profiles towards a variety of cancer cell lines.


Asunto(s)
Antineoplásicos , Neoplasias , Receptores sigma , Antineoplásicos/farmacología , Humanos , Ligandos , Receptores sigma/metabolismo , Relación Estructura-Actividad
9.
Molecules ; 27(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35684553

RESUMEN

Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10-45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6-20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44-1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.


Asunto(s)
Neuralgia , Receptores sigma , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Ligandos , Masculino , Ratones , Neuralgia/tratamiento farmacológico
10.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630697

RESUMEN

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Enfermedad Crónica , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628518

RESUMEN

The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study's purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO's effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO's implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO's contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.


Asunto(s)
Ferroptosis , Hemo Oxigenasa (Desciclizante) , Neoplasias de la Mama Triple Negativas , Glutatión , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Peróxidos Lipídicos , Especies Reactivas de Oxígeno/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-35278810

RESUMEN

Sigma-1 receptors are involved in pain modulation, particularly in cases of nerve injury and neuropathic pain. High-affinity ligands with improved pharmacokinetic profiles are needed to further investigate the properties of these receptors and their potential as a therapeutic target. The novel compound MCI-77 is one such selective sigma-1 receptor ligand, and the purpose of this study was to characterize its preclinical pharmacokinetic parameters. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify MCI-77 in mouse plasma and brain homogenate. The method was validated for sensitivity, selectivity, linearity, accuracy, precision, stability, and dilution integrity. The method has a linearity range of 2-200 ng/mL, a short run-time of 3.2 min, and requires a low sample volume of 25 µL. A simple protein precipitation procedure was used for compound extraction. Samples were run on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) following a gradient elution method using a mobile phase consisting of water containing 0.1% (v/v) formic acid and acetonitrile. The method was applied to the analysis of plasma and brain homogenate samples from preclinical pharmacokinetic studies in CD-1 mice. MCI-77 exhibited high systemic clearance (8.5 ± 0.3 L/h/kg) and extensive tissue distribution indicated by a high volume of distribution (20.1 ± 0.3 L/kg). The concentration levels were consistently higher in brain samples than in plasma (brain/plasma AUC ratio 2.9), indicating its ability to cross the blood-brain barrier.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ligandos , Ratones , Receptores sigma , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Receptor Sigma-1
13.
Chem Biol Drug Des ; 100(1): 25-40, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353926

RESUMEN

Sigma receptor is a transmembrane non-GPCR protein expressed mainly in the endoplasmic reticulum membrane associated with mitochondria. It is classified into two types: Sigma-1 (S1R) and Sigma-2 (S2R) based on their biological functions. S1R has been implicated in many neurological disorders such as anxiety, schizophrenia, and depression. Therefore, S1R ligands possess a variety of potential clinical applications with a great interest in the treatment of neuropathic pain. In this study, we report the discovery of a novel lead compound for S1R binding, based on the thiazolidine-2,4-dione nucleus. We have explored hydrophobic groups of different sizes on both sides of the five-membered ring scaffold guided by the crystal structure of S1R. Six compounds showed more than 50% displacement of the radioligand at 10 µM concentration with compound 6c resulting in 100% displacement and a Ki of 95.5 nM. Moreover, compounds 6c and 6e showed a significant selectivity over S2R. In addition, molecular docking predicted that all the compounds showed the critical salt bridge with Glu172 with variable degrees of π-stacking interaction with Tyr103. Upon optimization, this series of compounds could represent potential clinically useful S1R ligands for pain management.


Asunto(s)
Receptores sigma , Ligandos , Simulación del Acoplamiento Molecular , Receptores sigma/química , Tiazolidinas , Receptor Sigma-1
14.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054797

RESUMEN

Neuropathic pain is a significant problem with few effective treatments lacking adverse effects. The sigma-1 receptor (S1R) is a potential therapeutic target for neuropathic pain, as antagonists for this receptor effectively ameliorate pain in both preclinical and clinical studies. The current research examines the antinociceptive and anti-allodynic efficacy of SI 1/28, a recently reported benzylpiperazine derivative and analog of the S1R antagonist SI 1/13, that was 423-fold more selective for S1R over the sigma-2 receptor (S2R). In addition, possible liabilities of respiration, sedation, and drug reinforcement caused by SI 1/28 have been evaluated. Inflammatory and chemical nociception, chronic nerve constriction injury (CCI) induced mechanical allodynia, and adverse effects of sedation in a rotarod assay, conditioned place preference (CPP), and changes in breath rate and locomotor activity were assessed after i.p. administration of SI 1/28. Pretreatment with SI 1/28 produced dose-dependent antinociception in the formalin test, with an ED50 (and 95% C.I.) value of 13.2 (7.42-28.3) mg/kg, i.p. Likewise, SI 1/28 produced dose-dependent antinociception against visceral nociception and anti-allodynia against CCI-induced neuropathic pain. SI 1/28 demonstrated no impairment of locomotor activity, conditioned place preference, or respiratory depression. In summary, SI 1/28 proved efficacious in the treatment of acute inflammatory pain and chronic neuropathy without liabilities at therapeutic doses, supporting the development of S1R antagonists as therapeutics for chronic pain.


Asunto(s)
Analgésicos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Nocicepción , Receptores sigma/antagonistas & inhibidores , Analgésicos/administración & dosificación , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Hiperalgesia/complicaciones , Inflamación/complicaciones , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Receptores sigma/metabolismo , Factores de Tiempo , Vísceras/patología , Receptor Sigma-1
15.
J Med Chem ; 64(18): 13373-13393, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34472337

RESUMEN

Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo-Oxigenasa 1/antagonistas & inhibidores , Acetamidas/síntesis química , Acetamidas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Ratas Sprague-Dawley , Relación Estructura-Actividad
16.
Molecules ; 26(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361825

RESUMEN

Lipid-based nanocarriers (LNs) have made it possible to prolong corneal residence time and improve the ocular bioavailability of ophthalmic drugs. In order to investigate how the LNs interact with the ocular mucosa and reach the posterior eye segment, we have formulated lipid nanocarriers that were designed to bear a traceable fluorescent probe in the present work. The chosen fluorescent probe was obtained by a conjugation reaction between fluoresceinamine and the solid lipid excipient stearic acid, forming a chemically synthesized adduct (ODAF, N-(3',6'-dihydroxy-3-oxospiro [isobenzofuran-1(3H),9'-[9H] xanthen]-5-yl)-octadecanamide). The novel formulation (LN-ODAF) has been formulated and characterized in terms of its technological parameters (polydispersity index, mean particle size and zeta potential), while an in vivo study was carried out to assess the ability of LN-ODAF to diffuse through different ocular compartments. LN-ODAF were in nanometric range (112.7 nm ± 0.4), showing a good homogeneity and long-term stability. A TEM (transmission electron microscopy) study corroborated these results of characterization. In vivo results pointed out that after ocular instillation, LN ODAF were concentrated in the cornea (two hours), while at a longer time (from the second hour to the eighth hour), the fluorescent signals extended gradually towards the back of the eye. From the results obtained, LN-ODAF demonstrated a potential use of lipid-based nanoparticles as efficient carriers of an active pharmaceutical ingredient (API) involved in the management of retinal diseases.


Asunto(s)
Córnea/metabolismo , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Lípidos/química , Nanopartículas/administración & dosificación , Segmento Posterior del Ojo/metabolismo , Compuestos de Espiro/administración & dosificación , Animales , Córnea/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Segmento Posterior del Ojo/efectos de los fármacos , Conejos , Compuestos de Espiro/química
17.
ChemMedChem ; 16(23): 3496-3512, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34415107

RESUMEN

The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the "mutual prodrug" approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad-spectrum chemotherapeutics available for clinical use today, 5-fluorouracil (5-FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5-FU-based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Fluorouracilo/análogos & derivados , Fluorouracilo/uso terapéutico , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico , Animales , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Fluorouracilo/farmacología , Humanos , Profármacos/farmacología
18.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202711

RESUMEN

Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1-4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.


Asunto(s)
Antineoplásicos , Inhibidores Enzimáticos , Hemo-Oxigenasa 1/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias , Receptores sigma/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Ratas , Receptores sigma/metabolismo
19.
J Med Chem ; 64(15): 11597-11613, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34319100

RESUMEN

The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Ciprofloxacina/farmacología , Donantes de Óxido Nítrico/farmacología , Norfloxacino/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciprofloxacina/síntesis química , Ciprofloxacina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/síntesis química , Donantes de Óxido Nítrico/química , Norfloxacino/síntesis química , Norfloxacino/química , Procesos Fotoquímicos , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
J Med Chem ; 64(12): 7926-7962, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34076441

RESUMEN

Since their discovery as distinct receptor proteins, the specific physiopathological role of sigma receptors (σRs) has been deeply investigated. It has been reported that these proteins, classified into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation, and tumor aggressiveness. As a result, the development of selective σR ligands with potential antitumor properties attracted significant attention as an emerging theme in cancer research. This perspective deals with the recent advances of σR ligands as novel cytotoxic agents, covering articles published between 2010 and 2020. An up-to-date description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic activities has been provided, including major pharmacophore models and comprehensive structure-activity relationships for each main class of σR ligands.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos/farmacología , Receptores sigma/agonistas , Receptores sigma/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/uso terapéutico , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...