Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 12: 723233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552489

RESUMEN

Due to the increasing prevalence of life-threatening bacterial, fungal and viral infections and the ability of these human pathogens to develop resistance to current treatment strategies, there is a great need to find and develop new compunds to combat them. These molecules must have low toxicity, specific activity and high bioavailability. The most suitable compounds for this task are usually derived from natural sources (animal, plant or even microbial). In this review article, the latest and most promising natural compounds used to combat bacteria, filamentous fungi and viruses are presented and evaluated. These include plant extracts, essential oils, small antimicrobial peptides of animal origin, bacteriocins and various groups of plant compounds (triterpenoids; alkaloids; phenols; flavonoids) with antimicrobial and antiviral activity. Data are presented on the inhibitory activity of each natural antimicrobial substance and on the putative mechanism of action against bacterial and fungal strains. The results show that among the bioactive compounds studied, triterpenoids have significant inhibitory activity against coronaviruses, but flavonoids have also been shown to inhibit SARS-COV-2. The last chapter is devoted to nanocarriers used to improve stability, bioavailability, cellular uptake/internalization, pharmacokinetic profile and reduce toxicity of natural compunds. There are a number of nanocarriers such as liposomes, drug delivery microemulsion systems, nanocapsules, solid lipid nanoparticles, polymeric micelles, dendrimers, etc. However, some of the recent studies have focused on the incorporation of natural substances with antimicrobial/antiviral activity into polymeric nanoparticles, niosomes and silver nanoparticles (which have been shown to have intrinsic antimicrobial activity). The natural antimicrobials isolated from animals and microorganisms have been shown to have good inhibitory effect on a range of pathogens, however the plants remain the most prolific source. Even if the majority of the studies for the biological activity evaluation are in silico or in vitro, their internalization in the optimum nanocarriers represents the future of "green therapeutics" as shown by some of the recent work in the field.

2.
Pharmaceutics ; 13(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069731

RESUMEN

5-fluorouracil (5-FU) remains the gold standard of treatment for colorectal cancer, but its poor bioavailability and high systemic toxicity highlight the urgent need for the development of novel delivery strategies to increase the efficacy of 5-FU treatment. The present study is aimed to design and validate a PEGylated Silk Fibroin Nanocarrier (SF/PEG nanoparticles (NPs)) as an efficient 5-FU delivery system for potential intravenous administration. Using the human adenocarcinoma HT-29 cell line as an in vitro model for colorectal cancer, the cytotoxicity screening of the SF/PEG NPs showed that pristine nanocarriers were highly biocompatible, while the addition of 5-FU triggers a dramatic reduction in tumor cell viability, proliferation potential and mitochondrial integrity as well as a significant increase in nitric oxide production. Despite their high in vitro cytotoxicity, the 5-FU SF/PEG NPs were found hemocompatible as no impact on red blood cells hemolysis or the phagocytic activity of the granulocytes was observed. Exposure of HT-29 tumor cells and blood samples to 5-FU SF/PEG NPs augmented the tumor necrosis factor-α levels. Moreover, 5-FU SF/PEG NPs showed an impact on tumor cell migration and invasive potential as both of these processes were inhibited by the NP treatment.

3.
Molecules ; 24(22)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766195

RESUMEN

This paper reports the synthesis and complex characterization of novel polymeric networks based on the crosslinking of Bombyx mori silk fibroin via poly(N-isopropylacrylamide) bridges generated by an ammonium cerium nitrate redox system. The research study gives an understanding of the polymerization mechanism in terms of the generation of radical sites, radical growth and termination reaction, as well as the involvement of modifications on silk fibroin structure and properties. The physico-chemical characterization was carried out by FTIR-ATR, X-ray photoelectron spectroscopy and RAMAN spectroscopy with unravelling the chemical modification. The structural characterization and spatial arrangement by secondary structure were carried out by X-ray diffraction and circular dichroism. The thermal behavior and thermal stability were evaluated by differential scanning calorimetry and thermogravimetric analysis. The novel complex polymer network is intended to be used in the field of smart drug delivery systems.


Asunto(s)
Resinas Acrílicas/química , Fibroínas/química , Seda/química , Tirosina/química , Dicroismo Circular , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Termogravimetría , Trasplante de Tejidos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...