Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Pest Manag Sci ; 79(9): 3262-3270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37073818

RESUMEN

BACKGROUND: The Japanese beetle Popillia japonica Newman is an insect pest native to Japan that has spread into North America, the Azores and, recently, into continental Europe. Here, we present a study assessing the effectiveness of a long-lasting insecticide-treated net (LLIN), assembled in semiochemical-baited attract-and-kill devices (A&Ks) as a low environmental impact means to control P. japonica in the field. We compared the attractiveness of three different forms of A&Ks that were left outdoors throughout the summer, and the residence time of P. japonica landing on them. Moreover, we performed a preliminary study testing the effectiveness of new LLINs after storage. Collected data also allowed us to investigate the beetles' diel flight patterns in relation to meteorological conditions. RESULTS: Killing effectiveness of the field-exposed A&Ks declined steadily over the flight season (from 100% to 37.5%) associated with a decrease in residues of α-cypermethrin, the active ingredient in the LLINs. The different A&K forms (pyramidal, octahedral and ellipsoidal) attracted similar numbers of beetles. Individual beetles' residence time ranged from 75 to 95 s and differed slightly between A&K forms. Effectiveness of LLINs decreased by ≈30% after 1 year storage. Based on numbers landing on A&Ks, the beetles' flight activity peaked about 14:30 h and was inversely correlated with relative humidity. CONCLUSION: This study indicates that semiochemical-baited A&Ks are effective for controlling P. japonica in the field. Because of active ingredient decay, the LLINs should be replaced after 30-40 days of field exposure to ensure that the A&Ks remain fully functional. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Mariposas Diurnas , Escarabajos , Insecticidas , Animales , Control de Insectos , Insecticidas/farmacología , Feromonas/farmacología
3.
J Agric Food Chem ; 71(4): 2152-2159, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649540

RESUMEN

The use of skin repellents against hematophagous mosquitoes is an important personal protection practice wherever these insects are abundant and where they are vectors of diseases. DEET and Icaridin are the major synthetic insect repellents in commercial formulations and are considered the most effective. Here, we tested against the mosquito Aedes albopictus several cyclic hydroxyacetals synthesized by acetalization of commercially available aliphatic carbonyl compounds (ranging from C3 to C15) with either glycerol, 1,1,1-trismethyloletane, or 1,1,1-trismethylolpropane and compared their efficacy with commercial repellents. We found that several hydroxyacetals were comparable with DEET and Icaridin both in terms of the required dose and repellence duration, while a few performed better. For those most active, toxicity was investigated, finding that a few of them were less cytotoxic than DEET and less prone to permeate through cell layers. Therefore, such results indicate that novel safe mosquito repellents could be developed among cyclic hydroxyacetals.


Asunto(s)
Aedes , Repelentes de Insectos , Animales , Repelentes de Insectos/farmacología , DEET , Acetales , Mosquitos Vectores
4.
Pest Manag Sci ; 78(12): 5106-5112, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36102335

RESUMEN

BACKGROUND: Several essential oils, including citronella (lemongrass, Cymbopogon sp., Poaceae), are well-known mosquito repellents. A drawback of such products is their limited protection time resulting from the high volatility of their active components. In particular, citronella oil protects for <2 h, although formulations with fixatives can increase this time. RESULTS: We synthesized hydroxylated cyclic acetals of citronellal, the main component of citronella, to obtain derivatives with lower volatility and weaker odour. The crude mixture of isomers obtained in the reaction was tested under laboratory conditions for its repellency against two mosquito species, the major malaria vector Anopheles gambiae and the arbovirus vector Aedes albopictus, and found to be endowed with longer protection time with respect to DEET (N,N-diethyl-meta-toluamide) at the same concentration. Formulated products were tested in a latin square human field trial, in an area at a high density of A. albopictus for 8 h from the application. We found that the performance of the citronellal derivatives mixture is comparable (95% protection for ≤3.5 h) with those of the most widespread synthetic repellents DEET and Icaridin, tested at a four-fold higher doses. CONCLUSIONS: Modifying the hydrophilicity and volatility of natural repellents is a valuable strategy to design insect repellents with a long-lasting effect. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aedes , Anopheles , Repelentes de Insectos , Malaria , Humanos , Animales , Repelentes de Insectos/farmacología , DEET/farmacología , Mosquitos Vectores
5.
Sci Rep ; 10(1): 8928, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488140

RESUMEN

The significant risk of disease transmission has selected for effective immune-defense strategies in insect societies. Division of labour, with individuals specialized in immunity-related tasks, strongly contributes to prevent the spread of diseases. A trade-off, however, may exist between phenotypic specialization to increase task efficiency and maintenance of plasticity to cope with variable colony demands. We investigated the extent of phenotypic specialization associated with a specific task by using allogrooming in the honeybee, Apis mellifera, where worker behaviour might lower ectoparasites load. We adopted an integrated approach to characterize the behavioural and physiological phenotype of allogroomers, by analyzing their behavior (both at individual and social network level), their immunocompetence (bacterial clearance tests) and their chemosensory specialization (proteomics of olfactory organs). We found that allogroomers have higher immune capacity compared to control bees, while they do not differ in chemosensory proteomic profiles. Behaviourally, they do not show differences in the tasks performed (other than allogrooming), while they clearly differ in connectivity within the colonial social network, having a higher centrality than control bees. This demonstrates the presence of an immune-specific physiological and social behavioural specialization in individuals involved in a social immunity related task, thus linking individual to social immunity, and it shows how phenotypes may be specialized in the task performed while maintaining an overall plasticity.


Asunto(s)
Abejas/inmunología , Animales , Aseo Animal , Inmunocompetencia , Conducta Social
6.
Sci Rep ; 10(1): 1092, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974464

RESUMEN

The fig tree weevil Aclees sp. cf. foveatus (Coleoptera: Curculionidae), introduced in Italy in 2005, is currently causing significant economic and environmental losses to fig tree nurseries and orchards in Central Italy. Fig damages are due to the adults feeding on leaves and fruits, and to the galleries dug by the xylophagous larvae in the trunk, which lead the plants to death. To date, no chemical or biological control methods resulted to be effective against this invasive pest. In order to gain information about possible semiochemicals involved in mate recognition and choice, both the volatile organic compounds (VOCs) and the epicuticular lipids of male and female specimens were analysed. VOCs emissions of specimens were characterized essentially by monoterpenes, while epicuticular lipids contained long chained 2-ketones, alkanes, alkenes, including some methyl alkenes, and several fatty acid propyl esters. The attractiveness of reconstituted VOCs blends of the two sexes was tested in electrophysiological and behavioural assays in laboratory conditions. Both the male and the female reconstituted VOCs drove a significant response towards individuals of the opposite sex, thus demonstrating features of sexual attractants. Our results suggest a possible application of VOCs blends as pheromonic attractants in field monitoring and mass trapping of Aclees sp. cf. foveatus.


Asunto(s)
Comunicación Animal , Gorgojos/química , Gorgojos/fisiología , Animales , Femenino , Metabolismo de los Lípidos , Lípidos/química , Masculino , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Gorgojos/clasificación
7.
Front Physiol ; 9: 748, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973886

RESUMEN

Reproductive and task partitioning in large colonies of social insects suggest that colony members belonging to different castes or performing different tasks during their life (polyethism) may produce specific semiochemicals and be differently sensitive to the variety of pheromones involved in intraspecific chemical communication. The main peripheral olfactory organs are the antennal chemosensilla, where the early olfactory processes take place. At this stage, members of two different families of soluble chemosensory proteins [odorant-binding proteins (OBPs) and chemosensory proteins (CSPs)] show a remarkable affinity for different odorants and act as carriers while a further family, the Niemann-Pick type C2 proteins (NPC2) may have a similar function, although this has not been fully demonstrated. Sensillar lymph also contains Odorant degrading enzymes (ODEs) which are involved in inactivation through degradation of the chemical signals, once the message is conveyed. Despite their importance in chemical communication, little is known about how proteins involved in peripheral olfaction and, more generally antennal proteins, differ in honeybees of different caste, task and age. Here, we investigate for the first time, using a shotgun proteomic approach, the antennal profile of honeybees of different castes (queens and workers) and workers performing different tasks (nurses, guards, and foragers) by controlling for the potential confounding effect of age. Regarding olfactory proteins, major differences were observed between queens and workers, some of which were found to be more abundant in queens (OBP3, OBP18, and NPC2-1) and others to be more abundant in workers (OBP15, OBP21, CSP1, and CSP3); while between workers performing different tasks, OBP14 was more abundant in nurses with respect to guards and foragers. Apart from proteins involved in olfaction, we have found that the antennal proteomes are mainly characterized by castes and tasks, while age has no effect on antennal protein profile. Among the main differences, the strong decrease in vitellogenins found in guards and foragers is not associated with age.

8.
Sci Rep ; 8(1): 5719, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29632403

RESUMEN

Eusocial insects live in teeming societies with thousands of their kin. In this crowded environment, workers combat disease by removing or burying their dead or diseased nestmates. For honey bees, we found that hygienic brood-removal behavior is triggered by two odorants - ß-ocimene and oleic acid - which are released from brood upon freeze-killing. ß-ocimene is a co-opted pheromone that normally signals larval food-begging, whereas oleic acid is a conserved necromone across arthropod taxa. Interestingly, the odorant blend can induce hygienic behavior more consistently than either odorant alone. We suggest that the volatile ß-ocimene flags hygienic workers' attention, while oleic acid is the death cue, triggering removal. Bees with high hygienicity detect and remove brood with these odorants faster than bees with low hygienicity, and both molecules are strong ligands for hygienic behavior-associated odorant binding proteins (OBP16 and OBP18). Odorants that induce low levels of hygienic behavior, however, are weak ligands for these OBPs. We are therefore beginning to paint a picture of the molecular mechanism behind this complex behavior, using odorants associated with freeze-killed brood as a model.


Asunto(s)
Alquenos/farmacología , Abejas/fisiología , Ácido Oléico/farmacología , Feromonas/farmacología , Monoterpenos Acíclicos , Animales , Abejas/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Cadáver , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo
9.
J Proteomics ; 181: 131-141, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29653265

RESUMEN

We have performed a proteomic analysis on chemosensory organs of Varroa destructor, the honey bee mite, in order to identify putative soluble carriers for pheromones and other olfactory cues emitted by the host. In particular, we have analysed forelegs, mouthparts (palps, chelicera and hypostome) and the second pair of legs (as control tissue) in reproductive and phoretic stages of the Varroa life cycle. We identified 958 Varroa proteins, most of them common to the different organs and stages. Sequence analysis shows that four proteins can be assigned to the odorant-binding protein (OBP)-like class, which bear some similarity to insect OBPs, but so far have only been reported in some Chelicerata. In addition, we have detected the presence of two proteins belonging to the Niemann-Pick family, type C2 (NPC2), which have also been suggested as semiochemical carriers. Biological significance: The mite Varroa destructor is the major parasite of the honey bee and is responsible for great economical losses. The biochemical tools used by Varroa to detect semiochemicals produced by the host are still largely unknown. This work contributes to understand the molecular basis of olfaction in Varroa and, more generally, how detection of semiochemicals has evolved in terrestrial non-hexapod Arthropoda. Moreover, the identification of molecular carriers involved in olfaction can contribute to the development of control strategies for this important parasite.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Abejas/parasitología , Feromonas/metabolismo , Proteómica , Receptores Odorantes/metabolismo , Varroidae/metabolismo , Animales
10.
Biol Rev Camb Philos Soc ; 93(1): 184-200, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28480618

RESUMEN

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are regarded as carriers of pheromones and odorants in insect chemoreception. These proteins are typically located in antennae, mouth organs and other chemosensory structures; however, members of both classes of proteins have been detected recently in other parts of the body and various functions have been proposed. The best studied of these non-sensory tasks is performed in pheromone glands, where OBPs and CSPs solubilise hydrophobic semiochemicals and assist their controlled release into the environment. In some cases the same proteins are expressed in antennae and pheromone glands, thus performing a dual role in receiving and broadcasting the same chemical message. Several reports have described OBPs and CSPs in reproductive organs. Some of these proteins are male specific and are transferred to females during mating. They likely carry semiochemicals with different proposed roles, from inhibiting other males from approaching mated females, to marking fertilized eggs, but further experimental evidence is still needed. Before being discovered in insects, the presence of binding proteins in pheromone glands and reproductive organs was widely reported in mammals, where vertebrate OBPs, structurally different from OBPs of insects and belonging to the lipocalin superfamily, are abundant in rodent urine, pig saliva and vaginal discharge of the hamster, as well as in the seminal fluid of rabbits. In at least four cases CSPs have been reported to promote development and regeneration: in embryo maturation in the honeybee, limb regeneration in the cockroach, ecdysis in larvae of fire ants and in promoting phase shift in locusts. Both OBPs and CSPs are also important in nutrition as solubilisers of lipids and other essential components of the diet. Particularly interesting is the affinity for carotenoids of CSPs abundantly secreted in the proboscis of moths and butterflies and the occurrence of the same (or very similar CSPs) in the eyes of the same insects. A role as a carrier of visual pigments for these proteins in insects parallels that of retinol-binding protein in vertebrates, a lipocalin structurally related to OBPs of vertebrates. Other functions of OBPs and CSPs include anti-inflammatory action in haematophagous insects, resistance to insecticides and eggshell formation. Such multiplicity of roles and the high success of both classes of proteins in being adapted to different situations is likely related to their stable scaffolding determining excellent stability to temperature, proteolysis and denaturing agents. The wide versatility of both OBPs and CSPs in nature has suggested several different uses for these proteins in biotechnological applications, from biosensors for odours to scavengers for pollutants and controlled releasers of chemicals in the environment.


Asunto(s)
Proteínas de Insectos/fisiología , Insectos/fisiología , Receptores Odorantes/fisiología , Animales , Odorantes , Unión Proteica
11.
Artículo en Inglés | MEDLINE | ID: mdl-28822866

RESUMEN

In female mosquitoes, host-seeking and preference as well as several other important behaviors are largely driven by olfaction. Species of the Afrotropical Anopheles gambiae complex display divergent host-preference that are associated with significant differences in their vectorial capacity for human malaria. Olfactory sensitivity begins with signal transduction and activation of peripheral sensory neurons that populate the antennae, maxillary palps and other appendages. We have used shotgun proteomics to characterize the profile of soluble proteins of antennae and maxillary palps of three different species: An. coluzzii, An. arabiensis and An. quadriannulatus that display remarkable differences in anthropophilic behavior. This analysis revealed interspecific differences in the abundance of several proteins that comprise cuticular components, glutathione S-transferase and odorant binding proteins, the latter of which known to be directly involved in odor recognition.


Asunto(s)
Anopheles/metabolismo , Antenas de Artrópodos/metabolismo , Proteínas de Insectos/análisis , Proteoma/análisis , Proteómica/métodos , Animales , Antenas de Artrópodos/química , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Solubilidad
12.
Int J Biol Sci ; 12(11): 1394-1404, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877091

RESUMEN

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera, we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis, as well as two butterflies Papilio machaon and Pieris rapae, using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and ß-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both ß-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins.


Asunto(s)
Ojo/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Animales , Proteómica , Receptores Odorantes/metabolismo
13.
Insect Biochem Mol Biol ; 78: 58-68, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693516

RESUMEN

In arthropods, the large majority of studies on olfaction have been focused on insects, where most of the proteins involved have been identified. In particular, chemosensing in insects relies on two families of membrane receptors, olfactory/gustatory receptors (ORs/GRs) and ionotropic receptors (IRs), and two classes of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). In other arthropods, such as ticks and mites, only IRs have been identified, while genes encoding for OBPs and CSPs are absent. A third class of soluble proteins, called Niemann-Pick C2 (NPC2) has been suggested as potential carrier for semiochemicals both in insects and other arthropods. Here we report the results of a proteomic analysis on olfactory organs (Haller's organ and palps) and control tissues of the tick Ixodes ricinus, and of immunostaining experiments targeting NPC2s. Adopting different extraction and proteomic approaches, we identified a large number of proteins, and highlighted those differentially expressed. None of the 13 NPC2s known for this species was found. On the other hand, using immunocytochemistry, we detected reaction against one NPC2 in the Haller's organ and palp sensilla. We hypothesized that the low concentration of such proteins in the tick's tissues could possibly explain the discrepant results. In ligand-binding assays the corresponding recombinant NPC2 showed good affinity to the fluorescent probe N-phenylnaphthylamine and to few organic compounds, supporting a putative role of NPC2s as odorant carriers.


Asunto(s)
Antenas de Artrópodos/fisiología , Proteínas de Artrópodos/genética , Ixodes/fisiología , Proteoma , Receptores Odorantes/genética , Animales , Proteínas de Artrópodos/metabolismo , Femenino , Ixodes/genética , Ixodes/crecimiento & desarrollo , Masculino , Ninfa/crecimiento & desarrollo , Proteómica , Receptores Odorantes/metabolismo
14.
BMC Genomics ; 16: 63, 2015 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-25757461

RESUMEN

BACKGROUND: The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees. RESULTS: After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect. CONCLUSIONS: Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens.


Asunto(s)
Abejas/genética , Conducta Animal/fisiología , Resistencia a la Enfermedad/genética , Sistemas Neurosecretores , Agricultura , Animales , Abejas/parasitología , Genotipo , Humanos , Larva , Nosema/patogenicidad , Odorantes , Polinización/genética , Transducción de Señal/genética , Varroidae/genética , Varroidae/patogenicidad
15.
Front Physiol ; 5: 320, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221516

RESUMEN

Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods.

16.
Parasitol Res ; 113(5): 1813-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24599300

RESUMEN

Mosquito repellents represent a cleaner and safer alternative for population control and reduce the diseases they carry in large areas of the world. Recently, research has been focused on repellents of natural origins, both crude essential oils and their main constituents. We have observed that, although a large number of compounds can be efficiently used as mosquito repellents, their efficacy is never higher than those of commercial products DEET and Icaridin. Reasoning that probably specific and exceptionally active repellents might not exist, we focused our research on products that could provide longer protection times with respect to current commercial formulations while being used at lower concentrations. Based on the structure of menthone, a moderate natural repellent, we designed and synthesised some cyclic ketals that, because of their reduced volatility, could be effective for longer periods. In particular, a 1% solution of one of such derivatives can still reduce mosquito bites by 90% after 2 h, while DEET provides the same performance only for 15 min, when used at the same concentration. The approach we illustrate can be applied to other compounds and other systems and offers the additional advantage that derivatives of reduced volatility are also endowed with weaker odours.


Asunto(s)
Culicidae , Mordeduras y Picaduras de Insectos/prevención & control , Repelentes de Insectos/química , Mentol/química , Animales , DEET/química , Humanos , Estructura Molecular , Odorantes , Aceites Volátiles/química , Aceites de Plantas/química
17.
Biochem Biophys Res Commun ; 446(1): 137-42, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24569079

RESUMEN

Fluorescence-linked binding assays allow determination of dissociation constants at equilibrium and have recently become increasingly popular, thanks to their ease of operation. Currently used probes, such as 1-aminoanthracene and N-phenyl-1-naphthylamine, are excited and emit in the ultraviolet region, but alternative ligands operating in the visible spectrum would be highly desirable for applications in biosensing devices. Based on the two above structures, we have designed and synthesised six new fluorescent probes to be used in ligand-binding assays. The compounds are derivatives of naphatalene, anthracene and fluoranthene and present two aromatic moieties linked by an amine nitrogen. We have measured the emission spectra of the new probes and their binding to three odorant-binding proteins. The probes bind the tested proteins with different affinities, generally with dissociation constants about one order of magnitude lower than the parent compounds. The extended aromatic systems present in the new compounds produced a shift of both excitation and emission peaks at higher wavelength, close or within the visible spectrum, thus facilitating measurements in biosensors for odorants and small organic molecules using optical devices.


Asunto(s)
Colorantes Fluorescentes/química , Receptores Odorantes/metabolismo , Animales , Abejas , Técnicas Biosensibles , Bombyx , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Proteínas de Insectos/metabolismo , Cinética , Ligandos , Estructura Molecular , Unión Proteica , Proteínas Recombinantes/metabolismo , Porcinos
18.
Appl Microbiol Biotechnol ; 98(1): 61-70, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24265030

RESUMEN

Odorant-binding proteins (OBPs) are small soluble polypeptides found in sensory organs of vertebrates and insects as well as in secretory glands and are dedicated to detection and release of chemical stimuli. OBPs of vertebrates belong to the family of lipocalin proteins, while those of insects are folded into α-helical domains. Both types of architectures are extremely stable to temperature, organic solvents and proteolytic digestion. These characteristics make OBPs suitable elements for fabricating biosensors to be used in the environment, as well as for other biotechnological applications. The affinity of OBPs for small volatile organic compounds is in the micromolar range, and they have broad specificity to a range of ligands. For biotechnological applications, OBPs can be expressed in bacterial systems at low cost and are easily purified. The large amount of information available on their structures and affinities to different molecules should allow the design of specific mutants with desired characteristics and represent a solid base for tailoring OBPs for different applications.


Asunto(s)
Técnicas Biosensibles/métodos , Biotecnología/métodos , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Secuencia de Aminoácidos , Animales , Insectos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Vertebrados
19.
PLoS One ; 8(11): e75162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282496

RESUMEN

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.


Asunto(s)
Anopheles/metabolismo , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Animales , Antenas de Artrópodos/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Proteómica , Receptores Odorantes/genética , Caracteres Sexuales
20.
Biochem Biophys Res Commun ; 437(4): 620-4, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23867828

RESUMEN

Despite the great economical interest of locusts in agriculture, knowledge on their chemoreception systems is still poor. Phenylacetonitrile is recognised as a pheromone of the desert locust Schistocerca gregaria, triggering gregarization, promoting aggregation and inhibiting courtship. However, in the other major locust species, Locusta migratoria, pheromones have not been reported. We have identified the two isomers of naphthylpropionitrile from the male reproductive organs of L. migratoria. Chemical synthesis has confirmed the identity of the two compounds. Both isomers show significant affinity to CSP91, a protein reported in the testis, but not to three other proteins of the same family (CSP180, CSP540 and CSP884) expressed in female accessory glands. The striking similarity of these compounds with phenylacetonitrile and the unusual nature of such chemicals strongly suggest that naphthylpropionitrile could be pheromones for L. migratoria, while their site of expression and binding activity indicate a role in communication between sexes.


Asunto(s)
Regulación de la Expresión Génica , Gónadas/química , Locusta migratoria/fisiología , Feromonas/química , Secuencia de Aminoácidos , Comunicación Animal , Animales , Concentración 50 Inhibidora , Proteínas de Insectos/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Nitrilos/química , Feromonas/aislamiento & purificación , Unión Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...