Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773358

RESUMEN

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Asunto(s)
Acacia , Colchicina , Semillas , Colchicina/farmacología , Acacia/efectos de los fármacos , Acacia/fisiología , Acacia/crecimiento & desarrollo , Acacia/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
2.
BMC Plant Biol ; 24(1): 368, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711001

RESUMEN

Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.


Asunto(s)
Capsicum , Frutas , Variación Genética , Fitoquímicos , Frutas/genética , Frutas/química , Cromatografía Líquida de Alta Presión , Capsicum/genética , Capsicum/química , Genotipo , Semillas/genética , Semillas/química
3.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724922

RESUMEN

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Solanum tuberosum , Fertilizantes/análisis , Fósforo/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Nitrógeno/metabolismo , Pakistán , Suelo/química , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo
4.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724950

RESUMEN

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Asunto(s)
Carbón Orgánico , Sequías , Estrés Salino , Solanum lycopersicum , Agua , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Carbón Orgánico/farmacología , Agua/metabolismo , Riego Agrícola , Fotosíntesis/efectos de los fármacos
5.
Sci Rep ; 14(1): 11469, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769392

RESUMEN

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Asunto(s)
Biomasa , Carbón Orgánico , Pirólisis , Carbón Orgánico/química , Fósforo/química , Fósforo/análisis , Madera/química , Concentración de Iones de Hidrógeno , Suelo/química , Temperatura , Acacia/química , Carbono/química , Carbono/análisis
6.
Sci Rep ; 14(1): 11139, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750151

RESUMEN

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Asunto(s)
Biomasa , Cicer , Fertilizantes , Fósforo , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Cicer/metabolismo , Cicer/crecimiento & desarrollo , Fabaceae/metabolismo , Fabaceae/crecimiento & desarrollo , Potasio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/crecimiento & desarrollo , Nitrógeno/metabolismo , Nutrientes/metabolismo
7.
Sci Rep ; 14(1): 11328, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760400

RESUMEN

A novel hyper cross-linked polymer of 2-Aminobenzoic acid (HCP-AA) is synthesized for the adsorption of Cr3+ and CO2. The Brunauer-Emmett-Teller surface area of HCP-AA is 615 m2 g-1. HCP-AA of particle size 0.5 nm showed maximum adsorption of Cr3+ for lab prepared wastewater (93%) while it was 88% for real industrial wastewater. It is might be due to electrostatic interactions, cation-π interactions, lone pair interactions and cation exchange at pH 7; contact time of 8 min; adsorbent dose 0.8 g. The adsorption capacity was calculated 52.63 mg g-1 for chromium metal ions at optimum conditions. Freundlich isotherm studies R2 = 0.9273 value is the best fit and follows pseudo second order kinetic model (R2 = 0.979). The adsorption is found non-spontaneous and exothermic through thermodynamic calculations like Gibbs free energy (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were 6.58 kJ mol-1, - 60.91 kJ mol-1 and - 45.79 kJ mol-1 K-1, respectively. The CO2 adsorption capacity of HCP-AA is 1.39 mmol/g with quantity of 31.1 cm3/g (6.1 wt%) at 273Kwhile at 298 K adsorption capacity is 1.12 mmol/g with quantity 25.2 cm3/g (5 wt%). Overall, study suggests that carboxyl (-COOH) and amino (-NH2) groups may be actively enhancing the adsorption capacity of HCP-AA for Cr3+ and CO2.

8.
Chemosphere ; : 142368, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763397

RESUMEN

Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.

9.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714767

RESUMEN

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Asunto(s)
Nanopartículas del Metal , Compuestos de Plata , Nanopartículas del Metal/química , Animales , Humanos , Compuestos de Plata/química , Compuestos de Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Artemia/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tecnología Química Verde/métodos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Células Vero , Antifúngicos/farmacología , Antifúngicos/química , Plata/química , Plata/farmacología , Óxidos
10.
Chem Asian J ; : e202400245, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634677

RESUMEN

A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.

11.
Heliyon ; 10(7): e28209, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586335

RESUMEN

Background and aim: Citrus bent leaf viroid (CBLVd) is one of the emerging and widely distributed viroids in citrus-growing areas of the world, including Pakistan. Previously, CBLVd has been reported in Pakistan for the first time in 2009. Therefore, characterization of CBLVd is required to monitor the viroid status in the citrus orchards concerning citrus decline. Methods: Biological and molecular characterization of CBLVd was studied through biological indexing and confirmation through RT-PCR, followed by phylogenetic analysis of selected CBLVd isolates. Among four citrus cultivars viz., Kinnow (Citrus nobilis × Citrus deliciosa), Mosambi (C. sinensis), Futrell's Early (C. reticulata) and Lemon (C. medica) used as indicator plants for two transmission trials viz., graft inoculation and mechanical inoculation. Graft inoculation was more efficient than mechanical inoculation. Results: Symptoms such as mild mosaic, slight backward leaf bending, and leaf curling were observed after eight months' post-inoculation. Citrus nobilis × Citrus deliciosa, C. reticulata and C. sinensis were more sensitive to CBLVd as compared to C. medica. Inoculated plants were reconfirmed through RT-PCR amplicons of 233 bp. The phylogenetic tree of submitted sequences showed more than 90% relevance of CBLVd in Pakistan compared to the rest of the world. Conclusions: There was slight genetic variability, but more than 90% relevance was found among the submitted and already reported CBLVd isolate from Pakistan. Scanty literature is available regarding the biological and molecular studies of CBLVd in Pakistan. Therefore, the transmission and molecular characterization of CBLVd in Pakistan were studied for the first time.

12.
Sci Rep ; 14(1): 8548, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609467

RESUMEN

Radiative balance, local climate, and human health are all significantly influenced by aerosol. Recent severe air pollution over Lahore, a city in Pakistan calls for more thorough research to determine the negative impacts brought on by too many aerosols. To study regional aerosol characteristics and their differences from various aspects, in-depth and long-term (2007-2020) investigations of the columnar aerosol properties over the urban environment of Lahore were carried out by using AERONET data. The Aerosol Optical Depth (AOD400) and Angstrom Exponent (AE400-870) vary from low values of 0.10 to a maximum value of 4.51 and from 0.03 to 1.81, respectively. The huge differences in the amount of AOD440 as well as AE440-870 show the large fluctuation of aerosol classes because of various sources of their emission. During the autumn and winter seasons, the decreasing trend of the optical parameters of aerosols like Single Scattering Albedo (SSA) and Asymmetry Parameter (ASY) with increasing wavelength from 675 to 1020 nm indicates the dominance of light-absorbing aerosols (biomass burning (BB) and industrial/urban (UI). Due to the long-distance dust movement during spring, summer, and autumn, coarse mode particles predominated in Lahore during the study period. Dust type (DD) aerosols are found to be the dominant one during spring (46.92%), summer (54.31%), and autumn (57.46%) while urban industry (BB/UI) was dominant during the winter season (53.21%). During each season, the clean continental (CC) aerosols are found to be in negligible amounts, indicating terrible air quality in Lahore City. The present research work fills up the study gap in the optical properties of aerosols in Lahore and will help us understand more fully how local aerosol fluctuation affects regional climate change over the urban environment of Lahore.

13.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
14.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472226

RESUMEN

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Asunto(s)
Agua Potable , Agua Subterránea , Monitoreo de Radiación , Radón , Contaminantes Radiactivos del Agua , Humanos , Agua Potable/análisis , Monitoreo de Radiación/métodos , Radón/análisis , Pakistán , Contaminantes Radiactivos del Agua/análisis , Agua Subterránea/análisis , Contaminación del Agua/análisis
15.
Sci Rep ; 14(1): 6351, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491017

RESUMEN

The current decline in freshwater resources presents a significant global challenge to crop production, a situation expected to intensify with ongoing climate change. This underscores the need for extensive research to enhance crop yields under drought conditions, a priority for scientists given its vital role in global food security. Our study explores the effects of using humic and chitosan treatments to alleviate drought stress during critical growth phases and their impact on crop yield and water efficiency. We employed four different irrigation strategies: full irrigation, 70% irrigation at the early vine development stage, 70% irrigation during the storage root bulking stage, and 85% irrigation across both stages, complemented by full irrigation in other periods. The plants received either humic treatments through foliar spray or soil application, or chitosan foliar applications, with tap water serving as a control. Our findings highlight that the early vine development stage is particularly vulnerable to drought, with a 42.0% decrease in yield observed under such conditions. In normal growth scenarios, foliar application of humic substances significantly improved growth parameters, resulting in a substantial increase in yield and water efficiency by 66.9% and 68.4%, respectively, compared to the control treatment under full irrigation. For sweet potatoes irrigated with 70% water at the storage root bulking stage, ground application of humic substances outperformed both foliar applications of chitosan and humic in terms of yield results. The highest tuber yield and water efficiency were attained by combining chitosan and humic ground applications, regardless of whether 70% irrigation was used at the storage root bulking stage or 85% irrigation during both the early vine development and storage root bulking stages.


Asunto(s)
Quitosano , Ipomoea batatas , Sustancias Húmicas , Agua , Sequías , Estado Nutricional
17.
BMC Chem ; 18(1): 53, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493163

RESUMEN

This study encompasses a quick, efficient, repeatable and reproducible analytical method for simultaneous determination of Bromoxynil (3, 5-Dibromo-4-hydroxybenzonitrile) and MCPA (2-methyl-4-chlorophenoxyacetic acid) using RP-HPLC with UV-Detector. Bromoxynil + MCPA is one of the most selective post emergent herbicide formulations for the control of important broad leaf weeds infesting small grains (wheat, barley, oats, rye), conservation reserve program areas and grass grown for seed. Optimum weed control is achieved when Bromoxynil + MCPA is applied to actively growing weed seedlings. So, a simple, repeatable, reproducible and efficient simultaneous analytical method was developed for Bromoxynil + MCPA. The developed method was applied for the detection and quantitation of these pesticides in formulations and raw materials with excellent recoveries. It was validated according to ICH Guidelines with excellent linearity R2 = 0.992 for Bromoxynil and 0.998 for MCPA. For Bromoxynil, LOD = 1.57 mg/L and LOQ = 5.22 mg/L while for MCPA the LOD = 1.08 mg/L and LOQ = 3.62 mg/L was found. The proposed method has shown high precision (RSD %) 0.06% and 0.11% for Bromoxynil and MCPA respectively while the trueness has been calculated in terms of recovery percentage obtained as "mean value of Bromoxynil 99.53% and MCPA 100.10%" which is excellent under optimized conditions. For repeatability and reproducibility, five replicate readings of standard and sample were taken and had found within acceptable limits of relative standard deviation (RSD ≤ ± 2%). Finally, the robustness of the developed method was determined by changing flow rate and mobile phase ratios that has found within the permissible limits (% RSD NMT 1.5). So, the proposed analytical method has found to be more precise, valid and accurate at commercial scale.

18.
Sci Rep ; 14(1): 7553, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555358

RESUMEN

The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.


Asunto(s)
Araceae , Purificación del Agua , Aguas Residuales , Humedales , Ecosistema , Eliminación de Residuos Líquidos
19.
20.
Mol Biol Rep ; 51(1): 429, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517566

RESUMEN

Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.


Asunto(s)
Triticum , Agua , Fitomejoramiento , Fenotipo , Sequías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...