Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080334

RESUMEN

This work reports the formation of a novel adsorbent, prepared by activating bentonite with cinnamic acid, which is highly efficient to remove dyes from wastewater. The adsorption efficiency of the cinnamic acid activated bentonite was compared with unmodified bentonite by removing methyl orange and rhodamine-B from polluted water. The characterization was performed through X-ray diffraction (XRD) Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The results indicated that acidic pH and low temperature were more suitable for the selected dyes adsorption. The analysis of the data was done by the Langmuir and Freundlich isotherms; the Freundlich isotherm showed more suitability for the equilibrium data. The data were further analyzed by pseudo-first and pseudo-second-order models to study adsorption kinetics. The results showed that methyl orange and rhodamine-B adsorption obeyed pseudo-order kinetics. The results obtained from this research suggested that acid activation of bentonite with cinnamic acid increased the surface area of the clay and hence enhanced its adsorption efficiency. The maximum adsorption efficiency for the removal of methyl orange and rhodamine-B was up to 99.3 mg g-1 and 44.7 mg g-1, respectively, at 25 °C. This research provides an economical modification technique of bentonite, which makes it cost-effective and a good adsorbent for wastewater treatment.


Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Adsorción , Compuestos Azo , Bentonita/química , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Rodaminas/química , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Aguas Residuales , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA