Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2021): 20240220, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654642

RESUMEN

Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.


Asunto(s)
Cambio Climático , Ecosistema , Microbioma Gastrointestinal , Lagartos , Animales , Lagartos/fisiología , Lagartos/microbiología , Biodiversidad
2.
Mol Phylogenet Evol ; 193: 107997, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128795

RESUMEN

Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.


Asunto(s)
Biodiversidad , Ecosistema , Ratas , Animales , Filogenia , Madagascar , Bosques , Roedores/genética , ADN Mitocondrial/genética , Genómica
3.
Nat Commun ; 13(1): 3290, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672313

RESUMEN

Assessing the impact of human activity on ecosystems often links local biodiversity to disturbances measured within the same locality. However, remote disturbances may also affect local biodiversity. Here, we used environmental DNA metabarcoding to evaluate the relationships between vertebrate biodiversity (fish and mammals) and disturbance intensity in two Amazonian rivers. Measurements of anthropic disturbance -here forest cover losses- were made from the immediate vicinity of the biodiversity sampling sites to up to 90 km upstream. The findings suggest that anthropization had a spatially extended impact on biodiversity. Forest cover losses of <11% in areas up to 30 km upstream from the biodiversity sampling sites were linked to reductions of >22% in taxonomic and functional richness of both terrestrial and aquatic fauna. This underscores the vulnerability of Amazonian biodiversity even to low anthropization levels. The similar responses of aquatic and terrestrial fauna to remote disturbances indicate the need for cross-ecosystem conservation plans that consider the spatially extended effects of anthropization.


Asunto(s)
ADN Ambiental , Ecosistema , Animales , Biodiversidad , Bosques , Mamíferos/genética , Vertebrados/genética
4.
Ecology ; 103(2): e03599, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816429

RESUMEN

Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance-decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.


Asunto(s)
Biodiversidad , Suelo , Ecosistema , Bosques , Nutrientes , Microbiología del Suelo , Árboles
5.
Syst Biol ; 70(2): 203-218, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32642760

RESUMEN

Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].


Asunto(s)
Cheirogaleidae , Especiación Genética , Animales , Cheirogaleidae/clasificación , Cheirogaleidae/genética , ADN Mitocondrial/genética , Ecosistema , Fósiles , Filogenia
6.
Mol Ecol Resour ; 20(2): 371-386, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31650682

RESUMEN

High-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa. It is a flexible model-based method adapted to uneven sample sizes and to large and sparse data sets. Here, we compare LDA performance on abundance and occurrence data, and we quantify the robustness of the LDA decomposition by measuring its stability with respect to the algorithm's initialization. We then apply LDA to a survey of 1,131 soil DNA samples that were collected in a 12-ha plot of primary tropical forest and amplified using standard primers for bacteria, protists, fungi and metazoans. The analysis reveals that bacteria, protists and fungi exhibit a strong spatial structure, which matches the topographical features of the plot, while metazoans do not, confirming that microbial diversity is primarily controlled by environmental variation at the studied scale. We conclude that LDA is a sensitive, robust and computationally efficient method to detect and interpret the structure of large DNA-based biodiversity data sets. We finally discuss the possible future applications of this approach for the study of biodiversity.


Asunto(s)
Bacterias/aislamiento & purificación , Biología Computacional/métodos , Eucariontes/clasificación , Hongos/aislamiento & purificación , Microbiología del Suelo , Suelo/parasitología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Eucariontes/genética , Eucariontes/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento
7.
Sci Rep ; 9(1): 3085, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816174

RESUMEN

Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic biodiversity. It is based on the capture of DNA from a water sample. The sampled water volume, a crucial aspect for efficient species detection, has been empirically variable (ranging from few centiliters to tens of liters). This results in a high variability of sampling effort across studies, making comparisons difficult and raising uncertainties about the completeness of eDNA inventories. Our aim was to determine the sampling effort (filtered water volume) needed to get optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), resulting in sampling efforts ranging from 17 to 340 liters of water. We show that sampling 34 liters of water detected more than 64% of the expected fish fauna and permitted to distinguish the fauna between sites and between ecosystem types (stream versus rivers). Above 68 liters, the number of detected species per site increased slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters provided little additional information, testifying that filtering 34 to 68 liters is sufficient to inventory most of the fauna in highly diverse tropical aquatic ecosystems.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN Ambiental/análisis , Monitoreo del Ambiente/métodos , Peces/genética , Ríos/química , Agua/química , Animales , Biodiversidad , Guyana Francesa , Tamaño de la Muestra
8.
Mol Ecol Resour ; 19(1): 27-46, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29768738

RESUMEN

Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large-scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico/métodos , ADN/genética , ADN/aislamiento & purificación , Peces/clasificación , Agua Dulce/química , Metagenómica/métodos , Animales , ADN/química , Peces/genética , Guyana
9.
Mol Ecol ; 28(3): 528-543, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375061

RESUMEN

Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic-distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.


Asunto(s)
Biodiversidad , Biota , Tamaño Corporal , Bosque Lluvioso , Clima Tropical , Animales , Bacterias , Código de Barras del ADN Taxonómico , Cadena Alimentaria , Guyana Francesa , Hongos , Plantas , Microbiología del Suelo
10.
Genet Mol Biol ; 41(3): 661-670, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235400

RESUMEN

DNA barcoding helps to identify species, especially when identification is based on parts of organisms or life stages such as seeds, pollen, wood, roots or juveniles. However, the implementation of this approach strongly depends on the existence of complete reference libraries of DNA sequences. If such a library is incomplete, DNA-based identification will be inefficient. Here, we assess if DNA barcoding can already be implemented in species-rich tropical regions. We focus on the tree flora of São Paulo state, Brazil, which contains more than 2000 tree species. Using new DNA sequence data and carefully assembled GenBank accessions, we assembled 12,113 sequences from ten different regions. The ITS, rbcL, psbA-trnH, matK and trnL regions were better represented within the available sequences for São Paulo tree flora. Currently, only 58% of the São Paulo tree flora currently have at least one barcoding sequence available. However, these species represent on average 89% of the trees in São Paulo state forests. Therefore, conservation-oriented and ecological studies can already benefit from DNA barcoding to obtain more accurate species identifications. We present which taxa remain underrepresented for the São Paulo tree flora and discuss the implications of this result for other species-rich tropical regions.

11.
Biol Lett ; 13(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077687

RESUMEN

Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (πtlp). πtlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions.


Asunto(s)
Sequías , Presión Osmótica , Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología , Adaptación Fisiológica , Guyana Francesa , Estaciones del Año , Clima Tropical
12.
Sci Rep ; 6: 27282, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255732

RESUMEN

Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Insectos/fisiología , Plantas/genética , Polen/genética , Animales , ADN de Plantas/genética , Fenómenos Fisiológicos de las Plantas , Polinización , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1864-6, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-25319307

RESUMEN

The complete mitochondrial genome of the cracker butterfly Hamadryas epinome (C. Felder and R. Felder, 1867) (Lepidoptera: Nymphalidae: Biblidinae) has been sequenced using a genome-skimming approach on an Illumina Hiseq 2000 platform. The mitochondrial genome of H. epinome was determined to be 15,207 bp long and presents an organization similar to other Ditrysia mitogenomes. A non-coding poly-AT region of uncertain length is present at position 6180.


Asunto(s)
Mariposas Diurnas/genética , Genoma de los Insectos , Genoma Mitocondrial , Análisis de Secuencia de ADN/métodos , Animales , Emparejamiento Base/genética , Mapeo Cromosómico , Orden Génico , Genes Mitocondriales , ARN de Transferencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...