Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Hum Nutr Diet ; 37(2): 491-502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38130112

RESUMEN

OBJECTIVE: The aim of the study was to investigate the quantitative association between the dietary intakes of children and their caregivers. METHOD: In this cross-sectional study, a non-consecutive 2-day 24-h dietary recall was conducted in two seasons. Participants comprised 142 pairs of 12-59-month-old children and their female caregivers from rural areas of Kenya. Energy and micronutrient adequacy, food group intakes and food allocation were assessed. Differences and correlations between caregiver and child diets were examined, and multiple regression analysis was used to investigate the relationship between the children's and caregivers' dietary intakes. RESULTS: The child's diet was significantly lower in energy and higher in micronutrient adequacy than was the caregiver's diet (p < 0.001). Specifically, the child's diet contained more fruits, dairy products, sugar and confectionaries per 4184 kj. Children were allocated relatively more dishes containing nutrient-rich foods than staple foods. The correlation coefficients between the dietary intake of caregivers and children were stronger among 24-59-month-old children. After controlling with covariates, caregiver energy intake was significantly associated with child energy intake (standardised beta [ß] = 0.512, p < 0.001), and caregiver micronutrient adequacy was associated with child micronutrient adequacy (ß = 0.679 and ß = 0.262 after energy adjustment, p < 0.001). CONCLUSIONS: The dietary intakes of caregivers and children were closely related. The children had a more nutrient-rich diet compared to that of their caregivers. Differences in food group intakes and food allocation may contribute to the higher nutrient adequacy of children. There is a need to improve the diet of caregivers, which would contribute to improving the diet of children.


Asunto(s)
Dieta , Oligoelementos , Niño , Humanos , Femenino , Lactante , Preescolar , Estudios Transversales , Estaciones del Año , Kenia , Ingestión de Energía , Micronutrientes/análisis , Ingestión de Alimentos
2.
SLAS Technol ; 28(2): 55-62, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36503082

RESUMEN

The spot assay of the budding yeast Saccharomyces cerevisiae is an experimental method that is used to evaluate the effect of genotypes, medium conditions, and environmental stresses on cell growth and survival. Automation of the spot assay experiments from preparing a dilution series to spotting to observing spots continuously has been implemented based on large laboratory automation devices and robots, especially for high-throughput functional screening assays. However, there has yet to be an affordable solution for the automated spot assays suited to researchers in average laboratories and with high customizability for end-users. To make reproducible spot assay experiments widely available, we have automated the plate-based yeast spot assay of budding yeast using Opentrons OT-2 (OT-2), an affordable liquid-handling robot, and a flatbed scanner. We prepared a 3D-printed mount for the Petri dish to allow for precise placement of the Petri dish inside the OT-2. To account for the uneven height of the agar plates, which were made by human hands, we devised a method to adjust the z-position of the pipette tips based on the weight of each agar plate. During the incubation of the agar plates, a flatbed scanner was used to automatically take images of the agar plates over time, allowing researchers to quantify and compare the cell density within the spots at optimal time points a posteriori. Furthermore, the accuracy of the newly developed automated spot assay was verified by performing spot assays with human experimenters and the OT-2 and quantifying the yeast-grown area of the spots. This study will contribute to the introduction of automated spot assays and the automated acquisition of growth processes in conventional laboratories that are not adapted for high-throughput laboratory automation.


Asunto(s)
Robótica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Agar , Automatización , Genotipo
3.
PLoS Genet ; 18(7): e1010340, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35905103

RESUMEN

Puf5, a Puf-family RNA-binding protein, binds to 3´ untranslated region of target mRNAs and negatively regulates their expression in Saccharomyces cerevisiae. The puf5Δ mutant shows pleiotropic phenotypes including a weakened cell wall, a temperature-sensitive growth, and a shorter lifespan. To further analyze a role of Puf5 in cell growth, we searched for a multicopy suppressor of the temperature-sensitive growth of the puf5Δ mutant in this study. We found that overexpression of CLB2 encoding B-type cyclin suppressed the temperature-sensitive growth of the puf5Δ mutant. The puf5Δ clb2Δ double mutant displayed a severe growth defect, suggesting that Puf5 positively regulates the expression of a redundant factor with Clb2 in cell cycle progression. We found that expression of CLB1 encoding a redundant B-type cyclin was decreased in the puf5Δ mutant, and that this decrease of the CLB1 expression contributed to the growth defect of the puf5Δ clb2Δ double mutant. Since Puf5 is a negative regulator of the gene expression, we hypothesized that Puf5 negatively regulates the expression of a factor that represses CLB1 expression. We found such a repressor, Ixr1, which is an HMGB (High Mobility Group box B) protein. Deletion of IXR1 restored the decreased expression of CLB1 caused by the puf5Δ mutation and suppressed the growth defect of the puf5Δ clb2Δ double mutant. The expression of IXR1 was negatively regulated by Puf5 in an IXR1 3´ UTR-dependent manner. Our results suggest that IXR1 mRNA is a physiologically important target of Puf5, and that Puf5 and Ixr1 contribute to the cell cycle progression through the regulation of the cell cycle-specific expression of CLB1.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Ciclo Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas HMGB/genética , Proteínas del Grupo de Alta Movilidad/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
PLoS One ; 17(5): e0268283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522675

RESUMEN

RNA stability control contributes to the proper expression of gene products. Messenger RNAs (mRNAs) in eukaryotic cells possess a 5' cap structure and the 3' poly(A) tail which are important for mRNA stability and efficient translation. The Ccr4-Not complex is a major cytoplasmic deadenylase and functions in mRNA degradation. The CLB1-6 genes in Saccharomyces cerevisiae encode B-type cyclins which are involved in the cell cycle progression together with the cyclin-dependent kinase Cdc28. The CLB genes consist of CLB1/2, CLB3/4, and CLB5/6 whose gene products accumulate at the G2-M, S-G2, and late G1 phase, respectively. These Clb protein levels are thought to be mainly regulated by the transcriptional control and the protein stability control. Here we investigated regulation of CLB1-6 expression by Ccr4. Our results show that all CLB1-6 mRNA levels were significantly increased in the ccr4Δ mutant compared to those in wild-type cells. Clb1, Clb4, and Clb6 protein levels were slightly increased in the ccr4Δ mutant, but the Clb2, Clb3, and Clb5 protein levels were similar to those in wild-type cells. Since both CLB6 mRNA and Clb6 protein levels were most significantly increased in the ccr4Δ mutant, we further analyzed the cis-elements for the Ccr4-mediated regulation within CLB6 mRNA. We found that there were destabilizing sequences in both coding sequence and 3' untranslated region (3' UTR). The destabilizing sequences in the coding region were found to be both within and outside the sequences corresponding the cyclin domain. The CLB6 3' UTR was sufficient for mRNA destabilization and decrease of the reporter GFP gene and this destabilization involved Ccr4. Our results suggest that CLB6 expression is regulated by Ccr4 through the coding sequence and 3' UTR of CLB6 mRNA.


Asunto(s)
Ciclina B , Ribonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiones no Traducidas 3'/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nutrients ; 13(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960020

RESUMEN

This study aimed to investigate whether the Kenyan Food Pyramid (FP) can evaluate excess or insufficient nutrient intake. Participants were farmers (56 men and 64 women, aged 18-60 years) in Wangige Village, Kiambu County-a peri-urban area of Kenya. Cross-sectional data were collected for demographic characteristics, physical measurements, and 2-day and 24-h dietary recalls. The average adherence level to the FP (hereafter, "FP score") was 25.0 out of 50.0, with a minimum and maximum of 14.1 and 41.5, respectively. Energy and protein % energy ratio were significantly higher (p for trend < 0.05) in the higher FP score group. A higher FP score was also associated with a higher energy-adjusted micronutrient intake, and it was more likely to meet nutrient requirements. However, the higher FP score group had a higher risk of excess sodium intake (p for trend < 0.001). The Kenyan FP could be a useful tool for avoiding the risk of insufficient nutrient intake, but not for avoiding high energy and sodium intake. It is necessary to include appropriate evaluations to limit energy, sugar, and salt. Food groups and recommendations of the FP should be optimised according to the dietary environment of the target population so as to promote their health.


Asunto(s)
Dieta/normas , Necesidades Nutricionales , Estado Nutricional , Adulto , Estudios Transversales , Ingestión de Alimentos , Agricultores , Femenino , Humanos , Kenia , Masculino , Persona de Mediana Edad , Factores de Riesgo , Población Urbana
6.
Biochem Biophys Res Commun ; 570: 125-130, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280615

RESUMEN

There are two major deadenylase complexes, Ccr4-Not and Pan2-Pan3, which shorten the 3' poly(A) tail of mRNA and are conserved from yeast to human. We have previously shown that the Ccr4-mediated deadenylation plays the important role in gene expression regulation in the yeast stationary phase cell. In order to further understand the role of deadenylases in different growth condition, in this study we investigated the effect of deletion of both deadenylases on the cell in non-fermentable carbon containing media. We found that both ccr4Δ and ccr4Δ pan2Δ mutants showed similar growth defect in YPD media: when switched to media containing non-fermentable source (Glycerol-Lactate) only the ccr4Δ grew while the ccr4Δ pan2Δ did not. Ccr4, Pan2, and Pan3 were phosphorylated in GlyLac medium, suggesting that the activities of Ccr4, Pan2, and Pan3 may be regulated by phosphorylation in response to change of carbon sources. To get insights how Ccr4 and Pan2 function in the cell growth in media containing non-fermentable source only, we isolated multicopy suppressors for the growth defect on YPGlyLac media of the ccr4Δ pan2Δ mutant and identified two genes, STM1 and REX2, which encode a ribosome-associated protein and a 3'-5' RNA exonuclease, respectively. Our results suggest that the Pan2-Pan3 complex, together with the Ccr4-Not complex, has important roles in the growth on non-fermentable carbon sources.


Asunto(s)
Carbono/farmacología , Fermentación , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proliferación Celular/efectos de los fármacos , Medios de Cultivo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/genética , Fosforilación/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos
7.
Sci Rep ; 11(1): 11919, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099851

RESUMEN

Selective autophagy requires the autophagy receptor specifically localizing to the target for degradation. In the budding yeast, Atg39 and Atg40 function as an autophagy receptor for the endoplasmic reticulum (ER)-selective autophagy, referred to as ER-phagy. The expression level of the ATG39 gene is increased in response to ER stress and nitrogen starvation. Under unstressed conditions, ATG39 transcription is repressed by Mig1/2 repressors. ER stress activates Snf1 AMP-activated protein kinase (AMPK), which negatively regulates Mig1/2 and consequently derepresses ATG39 transcription. However, ATG39 expression is still induced by ER stress and nitrogen starvation in the absence of Snf1, suggesting that additional molecules are involved in regulation of ATG39 expression. Here, we identify Msn2/4 transcription factors as an activator of ATG39 transcription. Not only ATG39 promoter activity but also ER-phagy are downregulated by loss of Msn2/4 and disruption of Msn2/4-binding consensus sequences located in the ATG39 promoter. We also find that the cAMP-dependent protein kinase pathway is involved in Msn2/4-mediated transcriptional regulation of ATG39. Our results suggest that yeast ER-phagy is appropriately controlled through modulation of the expression level of the ER-phagy receptor involving multiple signaling pathways and transcription factors.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Regiones Promotoras Genéticas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
8.
PLoS One ; 16(5): e0251456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33984024

RESUMEN

Pbp1, the yeast ortholog of human Ataxin-2, was originally isolated as a poly(A) binding protein (Pab1)-binding protein. Pbp1 regulates the Pan2-Pan3 deadenylase complex, thereby modulating the mRNA stability and translation efficiency. However, the physiological significance of Pbp1 remains unclear since a yeast strain harboring PBP1 deletion grows similarly to wild-type strain on normal glucose-containing medium. In this study, we found that Pbp1 has a role in cell growth on the medium containing non-fermentable carbon sources. While the pbp1Δ mutant showed a similar growth compared to the wild-type cell on a normal glucose-containing medium, the pbp1Δ mutant showed a slower growth on the medium containing glycerol and lactate. Microarray analyses revealed that expressions of the genes involved in gluconeogenesis, such as PCK1 and FBP1, and of the genes involved in mitochondrial function, such as COX10 and COX11, were decreased in the pbp1Δ mutant. Pbp1 regulated the expressions of PCK1 and FBP1 via their promoters, while the expressions of COX10 and COX11 were regulated by Pbp1, not through their promoters. The decreased expressions of COX10 and COX11 in the pbp1Δ mutant were recovered by the loss of Dcp1 decapping enzyme or Xrn1 5'-3'exonuclease. Our results suggest that Pbp1 regulates the expressions of the genes involved in gluconeogenesis and mitochondrial function through multiple mechanisms.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Ataxina-2/metabolismo , Carbono/metabolismo , Fermentación , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Gluconeogénesis , Humanos , Proteínas de Unión a Poli(A)/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Genes Cells ; 26(6): 381-398, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33764672

RESUMEN

CCR4 and POP2 genes encode the catalytic subunit of the Ccr4-Not complex involved in shortening mRNA poly(A) tail in Saccharomyces cerevisiae. The ccr4Δ and pop2∆ mutants exhibit pleiotropic phenotypes such as slow and temperature-sensitive growth, aberrant expression of glucose repression genes and abnormal cell wall synthesis. We previously found that the growth defect of the ccr4Δ and pop2∆ mutants is suppressed by deletion of the PBP1 gene, which encodes poly(A)-binding protein (Pab1)-binding protein 1. In this study, we investigated the functional relationship between Ccr4/Pop2 and Pbp1 by measuring changes in gene expression in ccr4Δ and pop2∆ single mutants and ccr4Δ pbp1∆ and pop2∆ pbp1∆ double mutants. We found that expression of HSP12, HSP26, PIR3, FUS1 and GPH1 was increased in ccr4Δ and pop2∆ single mutants. The pbp1∆ mutation not only restored the growth defect but also reduced the increased expression of those genes found in the ccr4Δ and pop2∆ mutants. Over-expression of PBP1 in the ccr4Δ mutant further increased the expression of HSP12, HSP26, PIR3 and FUS1 and exacerbated the cell growth. These results suggest that the aberrant expression of a subset of genes, which is facilitated by Pbp1, contributes to the pleiotropic phenotypes of the ccr4Δ and pop2∆ mutants.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación/genética , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Proliferación Celular/genética , Ambiente , Eliminación de Gen , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Regulación hacia Arriba/genética
10.
Biosci Biotechnol Biochem ; 85(6): 1452-1459, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33784392

RESUMEN

eIF4E-binding proteins (4E-BPs) are translational repressors that compete with eIF4G for binding to eIF4E. Here we investigated the roles of yeast 4E-BPs, Eap1, and Caf20 in cell wall integrity pathway and gene expression. We found that eap1∆ mutation, but not caf20∆ mutation, showed synthetic growth defect with mutation in ROM2 gene encoding Rho1 GEF. The eap1∆ mutation also showed synthetic lethality with mutation in CCR4 gene encoding cytoplasmic deadenylase. Ccr4 functions in the degradation of LRG1 mRNA encoding Rho1 GAP. Eap1-Y109A L114A, which could not bind to eIF4E, did not suppress the synthetic lethality of eap1∆ ccr4∆ mutant, suggesting that 4E-binding of Eap1 is important for its function. We also found that eap1∆ mutant showed the derepression of stress response gene HSP12. 4E-binding of Eap1 was also required for the repression of HSP12 expression. Our results indicate that Eap1 has similar but independent roles in cell growth and gene expression with Ccr4.


Asunto(s)
Proliferación Celular , Regulación Fúngica de la Expresión Génica , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Mutación , Saccharomyces cerevisiae/genética
11.
J Chemother ; 33(1): 51-55, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32066346

RESUMEN

We administered FOLFOX (oxaliplatin (L-OHP) plus infusional 5-fluorouracil (5-FU) and leucovorin) to an hemodialysis (HD) patient with advanced gastric cancer (AGC), and investigated pharmacokinetics (PKs) and dialyzability of L-OHP. The patient was a 54-year-old Japanese man with a diagnosis of inoperable AGC. FOLFOX was instituted 3 h prior to the start of a 4 h HD period with the L-OHP and 5-FU doses reduced by 50% for the first cycle, and 30% reduced dose was administered for the second cycle. We performed an analysis of the PKs of L-OHP during these two cycles. Volume of distribution and area under the curve of the 30% reduced L-OHP dose were 56.7 L and 30.0 µg·h/mL, respectively. A dose reduction of L-OHP by 30%-50% may be advisable for the initial administration, given the need for careful administration of chemotherapy in HD patients, with particular attention to the development of hematological toxicities and neuropathy.


Asunto(s)
Fallo Renal Crónico/terapia , Oxaliplatino/farmacocinética , Oxaliplatino/uso terapéutico , Diálisis Renal , Neoplasias Gástricas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Relación Dosis-Respuesta a Droga , Fluorouracilo/farmacocinética , Fluorouracilo/uso terapéutico , Humanos , Fallo Renal Crónico/metabolismo , Leucovorina/farmacocinética , Leucovorina/uso terapéutico , Masculino , Persona de Mediana Edad , Compuestos Organoplatinos/farmacocinética , Compuestos Organoplatinos/uso terapéutico
12.
PLoS Genet ; 16(9): e1009053, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986716

RESUMEN

Autophagy is a fundamental process responsible for degradation and recycling of intracellular contents. In the budding yeast, non-selective macroautophagy and microautophagy of the endoplasmic reticulum (ER) are caused by ER stress, the circumstance where aberrant proteins accumulate in the ER. The more recent study showed that protein aggregation in the ER initiates ER-selective macroautophagy, referred to as ER-phagy; however, the mechanisms by which ER stress induces ER-phagy have not been fully elucidated. Here, we show that the expression levels of ATG39, encoding an autophagy receptor specific for ER-phagy, are significantly increased under ER-stressed conditions. ATG39 upregulation in ER stress response is mediated by activation of its promoter, which is positively regulated by Snf1 AMP-activated protein kinase (AMPK) and negatively by Mig1 and Mig2 transcriptional repressors. In response to ER stress, Snf1 promotes nuclear export of Mig1 and Mig2. Our results suggest that during ER stress response, Snf1 mediates activation of the ATG39 promoter and consequently facilitates ER-phagy by negatively regulating Mig1 and Mig2.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Regulación Fúngica de la Expresión Génica , Microorganismos Modificados Genéticamente , Mitofagia/fisiología , Mutación , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Front Plant Sci ; 11: 159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174941

RESUMEN

Breeding higher yielding forage species is limited by current manual harvesting and visual scoring techniques used for measuring or estimation of biomass. Automation and remote sensing for high throughput phenotyping has been used in recent years as a viable solution to this bottleneck. Here, we focus on using RGB imaging and deep learning for white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) yield estimation in a mixed sward. We present a new convolutional neural network (CNN) architecture designed for semantic segmentation of dense pasture and canopies with high occlusion to which we have named the local context network (LC-Net). On our testing data set we obtain a mean accuracy of 95.4% and a mean intersection over union of 81.3%, outperforming other methods we have found in the literature for segmenting clover from ryegrass. Comparing the clover/vegetation fraction for visual coverage and harvested dry-matter however showed little improvement from the segmentation accuracy gains. Further gains in biomass estimation accuracy may be achievable through combining RGB with complimentary information such as volumetric data from other sensors, which will form the basis of our future work.

14.
Yakugaku Zasshi ; 140(2): 319-328, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32009051

RESUMEN

In this study, antimicrobial stewardship team (AST) intervention was evaluated by comparing patient outcomes and consumption of broad-spectrum antibiotics [carbapenem antibiotics and tazobactam/piperacillin (TAZ/PIPC)] before and after the intervention. There was no fluctuation in the consumption rate of carbapenem, TAZ/PIPC and other antibiotics, but there was a decreased annual consumption of antibiotics after AST intervention compared to before intervention. For the carbapenems, antimicrobial use density (AUD) of meropenem (MEPM) was highest in both periods, at 20.1 and 20.4 before and after AST intervention, respectively, with no significant change after AST intervention. However, the days of therapy (DOT) for MEPM were 27.4 and 24.8 d, respectively, with a decreasing trend after AST intervention. AUD and DOT for TAZ/PIPC after AST intervention were 6.5 and 8.1 d, respectively, which were lower than the pre-intervention values. Rapid identification of the causative strain enables early de-escalation and may improve the economics of antibiotic use, but there was no difference from before to after AST intervention. Compared with before and after strain identification, the carbapenem administration rate after AST intervention was significantly lower than the pre-intervention rate (p<0.01). There was no difference in 28-day mortality and treatment period before and after AST intervention, and there were no differences in outcomes such as resolution of bacteremia, mortality, exacerbation and no change from before to after AST intervention. Based on these results, we suggest that AST intervention can reduce consumption of antibiotics without altering patient outcomes.


Asunto(s)
Antibacterianos/administración & dosificación , Programas de Optimización del Uso de los Antimicrobianos , Bacteriemia/tratamiento farmacológico , Grupo de Atención al Paciente , Anciano , Anciano de 80 o más Años , Antibacterianos/economía , Antibacterianos/farmacología , Bacteriemia/microbiología , Bacteriemia/mortalidad , Farmacorresistencia Bacteriana , Femenino , Humanos , Masculino , Pseudomonas aeruginosa/efectos de los fármacos , Factores de Tiempo , Resultado del Tratamiento
15.
Front Plant Sci ; 11: 611622, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569069

RESUMEN

Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70-100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.

16.
Plant Methods ; 15: 72, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31320920

RESUMEN

BACKGROUND: In-field measurement of yield and growth rate in pasture species is imprecise and costly, limiting scientific and commercial application. Our study proposed a LiDAR-based mobile platform for non-invasive vegetative biomass and growth rate estimation in perennial ryegrass (Lolium perenne L.). This included design and build of the platform, development of an algorithm for volumetric estimation, and field validation of the system. The LiDAR-based volumetric estimates were compared against fresh weight and dry weight data across different ages of plants, seasons, stages of regrowth, sites, and row configurations. RESULTS: The project had three phases, the last one comprising four experiments. Phase 1: a LiDAR-based, field-ready prototype mobile platform for perennial ryegrassrecognition in single row plots was developed. Phase 2: real-time volumetric data capture, modelling and analysis software were developed and integrated and the resultant algorithm was validated in the field. Phase 3. LiDAR Volume data were collected via the LiDAR platform and field-validated in four experiments. Expt.1: single-row plots of cultivars and experimental diploid breeding populations were scanned in the southern hemisphere spring for biomass estimation. Significant (P < 0.001) correlations were observed between LiDAR Volume and both fresh and dry weight data from 360 individual plots (R2 = 0.89 and 0.86 respectively). Expt 2: recurrent scanning of single row plots over long time intervals of a few weeks was conducted, and growth was estimated over an 83 day period. Expt 3: recurrent scanning of single-row plots over nine short time intervals of 2 to 5 days was conducted, and growth rate was observed over a 26 day period. Expt 4: recurrent scanning of paired-row plots over an annual cycle of repeated growth and defoliation was conducted, showing an overall mean correlation of LiDAR Volume and fresh weight of R2 = 0.79 for 1008 observations made across seven different harvests between March and December 2018. CONCLUSIONS: Here we report development and validation of LiDAR-based volumetric estimation as an efficient and effective tool for measuring fresh weight, dry weight and growth rate in single and paired-row plots of perennial ryegrass for the first time, with a consistently high level of accuracy. This development offers precise, non-destructive and cost-effective estimation of these economic traits in the field for ryegrass and potentially other pasture grasses in the future, based on the platform and algorithm developed for ryegrass.

17.
PLoS One ; 14(4): e0215064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30973945

RESUMEN

The S. cerevisiae Pop2 protein is an exonuclease in the Ccr4-Not complex that is a conserved regulator of gene expression. Pop2 regulates gene expression post-transcriptionally by shortening the poly(A) tail of mRNA. A previous study has shown that Pop2 is phosphorylated at threonine 97 (T97) by Yak1 protein kinase in response to glucose limitation. However, the physiological importance of Pop2 phosphorylation remains unknown. In this study, we found that Pop2 is phosphorylated at serine 39 (S39) under unstressed conditions. The dephosphorylation of S39 was occurred rapidly after glucose depletion, and the addition of glucose to the glucose-deprived culture recovered this phosphorylation, suggesting that Pop2 phosphorylation at S39 is regulated by glucose. This glucose-regulated phosphorylation of Pop2 at S39 is dependent on Pho85 kinase. We previously reported that Pop2 takes a part in the cell wall integrity pathway by regulating LRG1 mRNA; however, S39 phosphorylation of Pop2 is not involved in LRG1 expression. On the other hand, Pop2 phosphorylation at S39 is involved in the expression of HSP12 and HSP26, which encode a small heat shock protein. In the medium supplemented with glucose, Pop2 might be phosphorylated at S39 by Pho85 kinase, and this phosphorylation contributes to repress the expression of HSP12 and HSP26. Glucose starvation inactivated Pho85, which resulted in the derepression of HSP12 and HSP26, together with other glucose sensing mechanisms. Our results suggest that Pho85-dependent phosphorylation of Pop2 is a part of the glucose sensing system in yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Proteínas de Choque Térmico/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Represión Catabólica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Fosforilación , Ribonucleasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/química
18.
Genes Cells ; 23(12): 988-997, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30281869

RESUMEN

The PUF RNA-binding protein Puf5 is involved in regulation of the cell wall integrity (CWI) pathway in yeast. Puf5 negatively regulates expression of LRG1 mRNA, encoding for a GTPase-activating protein for Rho1 small GTPase. Here, we further analyzed the effect of Puf5 on LRG1 expression, together with Ccr4 and Pop2 deadenylases, Dhh1 decapping activator, and other PUF proteins. We found that the growth defect of puf5∆ mutant was enhanced by ccr4∆ mutation, which was partially suppressed by LRG1 deletion. Consistently, Lrg1 protein level was much more up-regulated in ccr4Δ puf5Δ double mutant than in each single mutant. Interestingly, LRG1 poly(A) tail length was longer in ccr4∆ mutant but not in puf5∆ mutant. Thus, Puf5 regulates LRG1 expression independently from Ccr4, although Puf5 recruits the Ccr4-Not deadenylase complex for mRNA destabilization. Unexpectedly, puf6Δ mutation suppressed the growth defect caused by ccr4Δ puf5∆ mutation. Loss of Rpl43a and Rpl43b ribosomal proteins, the previously identified Puf6 interactors, also suppressed the growth defect of ccr4Δ puf5Δ mutant. Our results suggest that Puf5 functions in the CWI pathway by regulating LRG1 expression in a deadenylase-independent manner, and that Puf6 is involved in the Ccr4- and Puf5-mediated regulation of cell growth through association with Rpl43.


Asunto(s)
Pared Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Activadoras de GTPasa/metabolismo , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo
19.
Sci Rep ; 8(1): 13078, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166606

RESUMEN

Expression control of the protein phosphatase is critically involved in crosstalk and feedback of the cellular signaling. In the budding yeast ER stress response, multiple signaling pathways are activated and play key roles in adaptive reactions. However, it remains unclear how the expression level of the protein phosphatase is modulated during ER stress response. Here, we show that ER stress increases expression of Ptp2 tyrosine phosphatase and Cmp2 calcineurin phosphatase. Upregulation of Ptp2 is due to transcriptional activation mediated by Mpk1 MAP kinase and Rlm1 transcription factor. This induction is important for Ptp2 to effectively downregulate the activity of Hog1 MAP kinase. The budding yeast genome possesses two genes, CMP2 and CNA1, encoding the catalytic subunit of calcineurin phosphatase. CMP2 is more important than CNA1 not only in ER stress response, but also in salt stress response. Higher promoter activity of CMP2 contributes to its relative functional significance in ER stress response, but is less important for salt stress response. Thus, our results suggest that expression control of Ptp2 and Cmp2 protein phosphatases at the promoter level is crucial for adaptive responses to ER stress.


Asunto(s)
Adaptación Fisiológica , Calcineurina/metabolismo , Estrés del Retículo Endoplásmico , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Calcineurina/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Regiones Promotoras Genéticas/genética , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Cloruro de Sodio/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
J Palliat Med ; 21(5): 598-603, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29565714

RESUMEN

BACKGROUND: The skin fixative used in Mohs chemosurgery contains zinc chloride and is referred to as Mohs paste (MP). However, MP shows a remarkable change in rheological characteristics after its preparation. OBJECTIVE: To prepare an MP with stable rheological characteristics, we prepared a modified MP (mMP) using zinc oxide 10% single ointment (Zn_ointment), which is an oil-based ointment. METHODS: We evaluated mMP by determining its rheological characteristics, depth of tissue fixation, and observation of the tissue surface after treatment. RESULTS: The viscosity of mMP increased after three months. However, the treatment-dependent viscosity of mMP could be obtained by mixing with glycerin. The viscosity and spreadability of mMP_3mth, which was three months after preparation, were 1992.0 ± 376.5 Pa·s and 2.1 ± 0.1 cm, respectively. In contrast, the viscosity and spreadability of MP mixed with glycerin were 436.9 ± 0.0 Pa·s and 2.8 ± 0.0 cm, respectively. The fixed invasion depth of MP was significantly higher than that of mMP (p < 0.05). CONCLUSION: This study of a mixture of MP and Zn_ointment showed that the viscosity of mMP could be adjusted with glycerin. Also, the tissue fixation of mMP progressed slowly compared with that of MP. This finding suggests that mMP is effective and safe for Mohs treatment.


Asunto(s)
Cirugía de Mohs/métodos , Pomadas/química , Reología , Adhesivos Tisulares/química , Fijación del Tejido/métodos , Óxido de Zinc/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...