Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435620

RESUMEN

Low atmospheric relative humidity (RH) accompanied by elevated air temperature and decreased precipitation are environmental challenges that wheat production will face in future decades. These changes to the atmosphere are causing increases in air vapor pressure deficit (VPD) and low soil water availability during certain periods of the wheat-growing season. The main objective of this study was to analyze the physiological, metabolic, and transcriptional response of carbon (C) and nitrogen (N) metabolism of wheat (Triticum durum cv. Sula) to increases in VPD and soil water stress conditions, either alone or in combination. Plants were first grown in well-watered conditions and near-ambient temperature and RH in temperature-gradient greenhouses until anthesis, and they were then subjected to two different water regimes well-watered (WW) and water-stressed (WS), i.e., watered at 50% of the control for one week, followed by two VPD levels (low, 1.01/0.36 KPa and high, 2.27/0.62 KPa; day/night) for five additional days. Both VPD and soil water content had an important impact on water status and the plant physiological apparatus. While high VPD and water stress-induced stomatal closure affected photosynthetic rates, in the case of plants watered at 50%, high VPD also caused a direct impairment of the RuBisCO large subunit, RuBisCO activase and the electron transport rate. Regarding N metabolism, the gene expression, nitrite reductase (NIR) and transport levels detected in young leaves, as well as determinations of the δ15N and amino acid profiles (arginine, leucine, tryptophan, aspartic acid, and serine) indicated activation of N metabolism and final transport of nitrate to leaves and photosynthesizing cells. On the other hand, under low VPD conditions, a positive effect was only observed on gene expression related to the final step of nitrate supply to photosynthesizing cells, whereas the amount of 15N supplied to the roots that reached the leaves decreased. Such an effect would suggest an impaired N remobilization from other organs to young leaves under water stress conditions and low VPD.

2.
J Agric Food Chem ; 67(31): 8441-8451, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31339045

RESUMEN

The increase in the atmospheric CO2 concentration is predicted to influence wheat production and grain quality and nutritional properties. In the present study, durum wheat (Triticum durum Desf. cv. Sula) was grown under two different CO2 (400 versus 700 µmol mol-1) concentrations to examine effects on the crop yield and grain quality at different phenological stages (from grain filling to maturity). Exposure to elevated CO2 significantly increased aboveground biomass and grain yield components. Growth at elevated CO2 diminished the elemental N content as well as protein and free amino acids, with a typical decrease in glutamine, which is the most represented amino acid in grain proteins. Such a general decrease in nitrogenous compounds was associated with altered kinetics of protein accumulation, N remobilization, and N partitioning. Our results highlight important modifications of grain metabolism that have implications for its nutritional quality.


Asunto(s)
Dióxido de Carbono/metabolismo , Semillas/crecimiento & desarrollo , Triticum/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dióxido de Carbono/análisis , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas/química , Semillas/metabolismo , Triticum/química , Triticum/crecimiento & desarrollo
3.
Front Plant Sci ; 6: 574, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26322051

RESUMEN

The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 µmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 µmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

4.
Plant Cell Environ ; 38(12): 2780-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26081746

RESUMEN

C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars.


Asunto(s)
Dióxido de Carbono/farmacología , Carbono/metabolismo , Triticum/fisiología , Aclimatación , Biomasa , Grano Comestible , Transporte de Electrón , Lisina/metabolismo , Metabolómica , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Triticum/efectos de los fármacos
5.
Physiol Plant ; 155(3): 338-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958969

RESUMEN

Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.


Asunto(s)
Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Transpiración de Plantas/fisiología , Triticum/fisiología , Aminoácidos/metabolismo , Biomasa , Carbono/metabolismo , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Temperatura
6.
Tree Physiol ; 33(10): 1061-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24162335

RESUMEN

An understanding of the mechanisms that determine plant response to reduced water availability is essential to improve water-use efficiency (WUE) of stone fruit crops. The physiological, biochemical and molecular drought responses of four Prunus rootstocks (GF 677, Cadaman, ROOTPAC 20 and ROOTPAC(®) R) budded with 'Catherina' peach cultivar were studied. Trees were grown in 15-l containers and subjected to a progressive water stress for 26 days, monitoring soil moisture content by time domain reflectometry. Photosynthetic and gas exchange parameters were determined. Root and leaf soluble sugars and proline content were also measured. At the end of the experiment, stressed plants showed lower net photosynthesis rate, stomatal conductance and transpiration rate, and higher intrinsic leaf WUE (AN/gs). Soluble sugars and proline concentration changes were observed, in both root and leaf tissues, especially in an advanced state of stress. The accumulation of proline in roots and leaves with drought stress was related to the decrease in osmotic potential and increase in WUE, whereas the accumulation of sorbitol in leaves, raffinose in roots and proline in both tissues was related only to the increase in the WUE. Owing to the putative role of raffinose and proline as antioxidants and their low concentration, they could be ameliorating deleterious effects of drought-induced oxidative stress by protecting membranes and enzymes rather than acting as active osmolytes. Higher expression of P5SC gene in roots was also consistent with proline accumulation in the tolerant genotype GF 677. These results indicate that accumulation of sorbitol, raffinose and proline in different tissues and/or the increase in P5SC expression could be used as markers of drought tolerance in peach cultivars grafted on Prunus rootstocks.


Asunto(s)
Adaptación Fisiológica , Sequías , Genes de Plantas , Estrés Oxidativo , Fotosíntesis , Prunus , Agua , Adaptación Fisiológica/genética , Antioxidantes/metabolismo , Deshidratación , Frutas , Gases , Ósmosis , Estrés Oxidativo/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transpiración de Plantas , Prolina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/fisiología , Rafinosa/metabolismo , Suelo , Sorbitol/metabolismo , Especificidad de la Especie
7.
J Exp Bot ; 64(7): 1879-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23564953

RESUMEN

The expansion of the world's population requires the development of high production agriculture. For this purpose, it is essential to identify target points conditioning crop responsiveness to predicted [CO2]. The aim of this study was to determine the relevance of ear sink strength in leaf protein and metabolomic profiles and its implications in photosynthetic activity and yield of durum wheat plants exposed to elevated [CO2]. For this purpose, a genotype with high harvest index (HI) (Triticum durum var. Sula) and another with low HI (Triticum durum var. Blanqueta) were exposed to elevated [CO2] (700 µmol mol(-1) versus 400 µmol mol(-1) CO2) in CO2 greenhouses. The obtained data highlighted that elevated [CO2] only increased plant growth in the genotype with the largest HI; Sula. Gas exchange analyses revealed that although exposure to 700 µmol mol(-1) depleted Rubisco content, Sula was capable of increasing the light-saturated rate of CO2 assimilation (Asat) whereas, in Blanqueta, the carbohydrate imbalance induced the down-regulation of Asat. The specific depletion of Rubisco in both genotypes under elevated [CO2], together with the enhancement of other proteins in the Calvin cycle, revealed that there was a redistribution of N from Rubisco towards RuBP regeneration. Moreover, the down-regulation of N, NO3 (-), amino acid, and organic acid content, together with the depletion of proteins involved in amino acid synthesis that was detected in Blanqueta grown at 700 µmol mol(-1) CO2, revealed that inhibition of N assimilation was involved in the carbohydrate imbalance and consequently with the down-regulation of photosynthesis and growth in these plants.


Asunto(s)
Dióxido de Carbono/metabolismo , Triticum/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Triticum/fisiología
8.
Funct Plant Biol ; 35(4): 306-317, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688786

RESUMEN

Many of the studies analysing the CO2 effect on plant development have been conducted in optimal growth conditions. Furthermore, although some of those studies suggest that legumes might show a steady productivity increase with rising CO2, the role of nodule activity on the plant responsiveness to predicted atmospheric CO2 enhancement is not well understood. In this study, C (metabolism and allocation) and N (nodule activity) interaction between the plant and the bacterial symbiont during the photosynthetic acclimation of N2-fixing alfalfa (Medicago sativa L. cv. Aragón) plants exposed to elevated CO2 and temperature conditions was analysed. The plants were grown in temperature gradient greenhouses (TGG) where, in the case of elevated CO2 treatments, the isotopic 13C/12C composition (δ13C) inside the TGG was modified. Compared with the corresponding temperature treatment, exposure to 700 µmol mol-1 CO2 enhanced dry mass (DM) of plants in elevated temperature treatments (26%), whereas no significant effect was detected in ambient temperature treatments. The δ13C data revealed that although all the carbon corresponding to leaf total organic matter (TOM) came from newly assimilated C, plants exposed to elevated CO2 did not develop strong sink activity (especially in ambient temperature conditions). Leaf carbohydrate build-up induced reduction in the Rubisco (E.C. 4.1.1.39) carboxylation capacity of plants. Despite this reduction in Rubisco content, plants exposed to elevated CO2 conditions maintained (at ambient temperature) or increased (at elevated temperature) photosynthetic rates (measured at growth conditions) by increasing N use efficiency. The larger C sink strength of nodules in plants grown at elevated CO2 and temperature conditions did not contribute towards overcoming photosynthetic acclimation. Further, the inhibitory effect of CO2 on nodule total activity was caused by a large depletion in total soluble protein (TSP) of nodules. Depletion of leaf N demand, together with the reduction in nodule carbohydrate availability (as reflected by the nodule starch concentration), negatively affected the nodule TSP content and enzymatic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA