Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365382

RESUMEN

BACKGROUND: Climate change results in warmer air temperatures and an uncertain amount and distribution of annual precipitations, which will directly impact rainfed crops, such as the grapevine. Traditionally, ancient autochthones grapevine varieties have been substituted by modern ones with higher productivity. However, this homogenization of genotypes reduces the genetic diversity of vineyards which could make their ability to adapt to challenges imposed by future climate conditions difficult. Therefore, this work aimed to assess the response of four ancient grapevine varieties to high temperatures under different water availabilities, focusing on plant water relations, grape technological and phenolic maturity, and the antioxidant capacity of the must. METHODS: The study was conducted on fruit-bearing cuttings grown in pots in temperature-gradient greenhouses. A two-factorial design was established where two temperature regimes, ambient and elevated (ambient + 4 °C), were combined with two water regimes, full irrigation and post-veraison deficit irrigation, during fruit ripening. RESULTS: There were significant differences among the ancient varieties regarding plant water relations and fruit quality. CONCLUSION: This research underlines the importance of evaluating the behavior of ancient grapevine varieties that could offer good options for the adaptation of viticulture to future climate conditions.

2.
Plants (Basel) ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807617

RESUMEN

Tempranillo Blanco is a somatic variant of Tempranillo Tinto that appeared as a natural, spontaneous mutation in 1988 in a single shoot of a single plant in an old vineyard. It was vegetatively propagated, and currently wines from Tempranillo Blanco are commercially available. The mutation that originated Tempranillo Blanco comprised single-nucleotide variations, chromosomal deletions, and reorganizations, losing hundreds of genes and putatively affecting the functioning and regulation of many others. The most evident, visual change in Tempranillo Blanco is the anthocyanin lost, producing this grapevine variety bunches of colorless grapes. This review aims to summarize from the available literature differences found between Tempranillo Blanco and Tinto in addition to the color of the grapes, in a climate change context and using fruit-bearing cuttings grown in temperature-gradient greenhouses as research-oriented greenhouses. The differences found include changes in growth, water use, bunch mass, grape quality (both technological and phenolic maturity), and some aspects of their photosynthetic response when grown in an atmosphere of elevated CO2 concentration and temperature, and low water availability. Under field conditions, Tempranillo Blanco yields less than Tempranillo Tinto, the lower weight of their bunches being related to a lower pollen viability and berry and seed setting.

3.
Physiol Plant ; 174(4): e13741, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35765704

RESUMEN

The implications of grape berry transpiration for the ripening process and final grape composition were studied. An experiment was conducted, under controlled conditions, with fruit-bearing cuttings of Vitis vinifera L. cv. Tempranillo. Three doses of the antitranspirant di-1-p-menthene were applied directly to the bunch at the onset of veraison: 1%, 5%, and 10% (v/v) (D1, D5, and D10, respectively). A treatment with bunches sprayed with water (D0) was also included as a control. Grape and bunch transpiration, and total soluble solids (TSS) accumulation rate decreased as the dose of antitranspirant increased, thus resulting in the lengthening of the ripening period. Bunch transpiration rates were linearly correlated with the elapsed time between veraison and maturity, and with the TSS accumulation rate. The evolution of pH, malic acid and total skin anthocyanins during ripening did not show remarkable changes as a consequence of the artificially reduced bunch transpiration. However, a decoupling between TSS and anthocyanins was observed. At maturity, the bunches treated with D10 had significantly lower must acidity and higher pH and extractable anthocyanin levels, these differences being likely associated with the lengthening of the ripening period. The results show a clear implication of grape transpiration for the ripening process and final grape composition, and give new hints on the direct application of antitranspirants to the bunch as a way to regulate sugar accumulation while avoiding the concurrent delay of color development.


Asunto(s)
Vitis , Antocianinas/metabolismo , Transporte Biológico , Frutas/fisiología , Azúcares/análisis , Vitis/fisiología
4.
Plants (Basel) ; 10(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208410

RESUMEN

The market demand together with the need for alternatives to withstand climate change led to the recovery of autochthonous grapevine varieties. Under climate change, the summer pruning of vineyards may lead to an increase of vegetative residuals of nutritional and medicinal interest. The objectives of our study were (1) to evaluate the nutritional properties of the leaves of three local Spanish grapevines (Tinto Velasco, TV, Pasera, PAS, and Ambrosina, AMB) when grown under climate change conditions, and (2) to test the potentiality of these grapevines as suitable candidates to be cultivated under climate change scenarios based on the quality of their must. Experimental assays were performed with fruit-bearing cuttings grown in temperature gradient greenhouses that simulate rising CO2 (700 µmol mol-1) and warming (ambient temperature +4 °C), either acting alone or in combination. TV and AMB were the most and the least affected by air temperature and CO2 concentration, respectively. The interaction of elevated CO2 with high temperature induced the accumulation of proteins and phenolic compounds in leaves of TV, thus enhancing their nutritional properties. In PAS, the negative effect of high temperature on protein contents was compensated for by elevated CO2. Warming was the most threatening scenario for maintaining the must quality in the three varieties, but elevated CO2 exerted a beneficial effect when acting alone and compensated for the negative effects of high temperatures. While TV may be a candidate to be cultivated in not very warm areas (higher altitudes or colder latitudes), PAS behaved as the most stable genotype under different environmental scenarios, making it the most versatile candidate for cultivation in areas affected by climate change.

5.
J Agric Food Chem ; 69(22): 6172-6185, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033469

RESUMEN

The exploration of the grapevine (Vitis vinifera L.) intra-varietal diversity can be an interesting approach for the adaptation of viticulture to climate change. We evaluated the response of four Tempranillo clones to simulated year-2100-expected air temperature, CO2, and relative humidity (RH) conditions: climate change (CC; 28 °C/18 °C, 700 µmol mol-1 CO2, and 35%/53% RH) vs current situation conditions (CS; 24 °C/14 °C, 400 µmol mol-1 CO2, and 45%/63% RH), under two irrigation regimes, "well-watered" (WW) vs "water deficit" (WD). The treatments were applied to fruit-bearing cuttings grown under research-oriented greenhouse controlled conditions. CC increased sugar accumulation and hastened grape phenology, an effect that was mitigated by water deficit. Both CC and water deficit modified amino acid concentrations and accumulation profiles with different intensities, depending on the clone. Combined CC and water deficit decreased anthocyanins and the anthocyanin to total soluble solids (TSS) ratio. The results suggest differences in the response of the clones to the 2100-projected conditions, which are not always solely explained by differences observed in the ripening dynamics. Among the clones studied, RJ43 and CL306 were the most affected by CC/WD conditions; meanwhile, 1084 was globally less affected than the other clones.


Asunto(s)
Vitis , Antocianinas , Dióxido de Carbono , Células Clonales , Frutas , Temperatura , Inseguridad Hídrica
6.
Physiol Plant ; 172(3): 1779-1794, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33704796

RESUMEN

Due to the CO2 greenhouse effect, elevated atmospheric concentration leads to higher temperatures, accompanied by episodes of less water availability in semiarid and arid areas or drought periods. Studies investigating these three factors (CO2 , temperature and water availability) simultaneously in grapevine are scarce. The present work aims to analyze the combined effects of high CO2 (700 ppm), high temperature (ambient +4°C) and drought on the photosynthetic activity, biomass allocation, leaf non-structural carbon composition, and carbon/nitrogen (C/N) ratio in grapevine. Two grapevine cultivars, red berry Tempranillo and white berry Tempranillo, were used, the latter being a natural, spontaneous mutant of the red cultivar. The experiment was performed on fruit-bearing cuttings during a 3-month period, from June (fruit set) to August (maturity). The plants were grown in research-oriented facilities, temperature-gradient greenhouses, where temperature, CO2 , and water supply can be modified in a combined way. Drought had the strongest effect on biomass accumulation compared to the other environmental variables, and root biomass allocation was increased under water deficit. CO2 and temperature effects were smaller and depended on cultivar, and on interactions with the other factors. Acclimation effects were observed on both cultivars as photosynthetic rates under high atmospheric CO2 were reduced by long-term exposition to elevated CO2 . Exposure to such high CO2 resulted in increased starch concentration and reduced C/N ratio in leaves. A correlation between the intensity of the reduction in photosynthetic rates and the accumulation of starch in the leaves was found after prolonged exposure to elevated CO2 .


Asunto(s)
Dióxido de Carbono , Agua , Aclimatación , Biomasa , Fotosíntesis , Hojas de la Planta
7.
Front Plant Sci ; 11: 603687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335536

RESUMEN

Tempranillo is a grapevine (Vitis vinifera L.) variety extensively used for world wine production which is expected to be affected by environmental parameters modified by ongoing global climate changes, i.e., increases in average air temperature and rise of atmospheric CO2 levels. Apart from determining their effects on grape development and biochemical characteristics, this paper considers the intravarietal diversity of the cultivar Tempranillo as a tool to develop future adaptive strategies to face the impact of climate change on grapevine. Fruit-bearing cuttings of five clones (RJ43, CL306, T3, VN31, and 1084) were grown in temperature gradient greenhouses (TGGs), from fruit set to maturity, under two temperature regimes (ambient temperature vs. ambient temperature plus 4°C) and two CO2 levels (ambient, ca. 400 ppm, vs. elevated, 700 ppm). Treatments were applied separately or in combination. The analyses carried out included berry phenological development, the evolution in the concentration of must compounds (organic acids, sugars, and amino acids), and total skin anthocyanins. Elevated temperature hastened berry ripening, sugar accumulation, and malic acid breakdown, especially when combined with high CO2. Climate change conditions reduced the amino acid content 2 weeks after mid-veraison and seemed to delay amino acidic maturity. Elevated CO2 reduced the decoupling effect of temperature on the anthocyanin to sugar ratio. The impact of these factors, taken individually or combined, was dependent on the clone analyzed, thus indicating certain intravarietal variability in the response of Tempranillo to these climate change-related factors.

8.
J Plant Physiol ; 252: 153226, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32763650

RESUMEN

Atmospheric CO2 levels and global temperatures are expected to rise in the next decades, and viticulture must face these changes. Within this context, exploiting the intra-varietal diversity of grapevine (Vitis vinifera L.) can be a useful tool for the adaptation of this crop to climate change. The aim of the present work was to study the effect of elevated temperature and elevated levels of atmospheric CO2, both individually and combined, on the growth, phenology and carbon partitioning of five clones of the cultivar Tempranillo (RJ43, CL306, T3, VN31 and 1084). The hypothesis that clones within the same variety that differ in their phenological development may respond in a different manner to the above mentioned environmental factors from a physiological point of view was tested. Grapevine fruit-bearing cuttings were grown from fruit set to maturity under two temperature regimes: ambient (T) vs elevated (ambient + 4°C, T + 4), combined with two CO2 levels: ambient (ca. 400 ppm, ACO2) vs elevated (700 ppm, ECO2), in temperature-gradient greenhouses (TGGs). Considering all the clones, elevated temperature hastened grape development and increased vegetative growth, but reduced grape production, the later most likely associated with the heat waves recorded during the experiment. Plants in the elevated CO2 treatments showed a higher photosynthetic activity at veraison and an increased vegetative growth, but they showed signs of photosynthetic acclimation to ECO2 at maturity according to the C:N ratio, especially when combined with high temperature. The combination of ECO2 and T + 4, mimicking climate change environmental conditions, showed additive effects in some of the parameters analyzed. The clones showed differences in their phenological development, which conditioned some responses to elevated CO2 and temperature in terms of vegetative production and C partitioning into different organs. The work adds new knowledge on the use of different grapevine clones, that can be useful to improve the viticultural efficiency in future climate change scenarios.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Cambio Climático , Calor , Vitis/fisiología , Calentamiento Global , Vitis/crecimiento & desarrollo , Vitis/metabolismo
9.
Front Plant Sci ; 11: 43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184791

RESUMEN

Environmental stress factors caused by climate change affect plant growth and crop production, and pose a growing threat to sustainable agriculture, especially for tree crops. In this context, we sought to investigate the responses to climate change of two Prunus rootstocks (GF677 and Adesoto) budded with Catherina peach cultivar. Plants were grown in 15 L pots in temperature gradient greenhouses for an 18 days acclimation period after which six treatments were applied: [CO2 levels (400 versus 700 µmol mol-1), temperature (ambient versus ambient + 4°C), and water availability (well irrigated versus drought)]. After 23 days, the effects of stress were evaluated as changes in physiological and biochemical traits, including expression of relevant genes. Stem water potential decreased under drought stress in plants grafted on GF677 and Adesoto rootstocks; however, elevated CO2 and temperature affected plant water content differently in both combinations. The photosynthetic rate of plants grafted on GF677 increased under high CO2, but decreased under high temperature and drought conditions. The photosynthetic rates of plants grafted onto Adesoto were only affected by drought treatment. Furthermore, in GF677-Catherina plants, elevated CO2 alleviated the effect of drought, whereas in those grafted onto Adesoto, the same condition produced acclimation in the rate. Stomatal conductance decreased under high CO2 and drought stress in both grafted rootstocks, and the combination of these conditions improved water-use efficiency. Changes in the sugar content in scion leaves and roots were significantly different under the stress conditions in both combinations. Meanwhile, the expression of most of the assessed genes was significantly affected by treatment. Regarding genotypes, GF677 rootstock showed more changes at the molecular and transcriptomic level than did Adesoto rootstock. A coordinated shift was found between the physiological status and the transcriptomic responses. This study revealed adaptive responses to climate change at the physiological, metabolic, and transcriptomic levels in two Prunus rootstocks budded with 'Catherina'. Overall, these results demonstrate the resilient capacity and plasticity of these contrasting genotypes, which can be further used to combat ongoing climate changes and support sustainable peach production.

10.
Plants (Basel) ; 10(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396405

RESUMEN

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.

11.
Photosynth Res ; 138(1): 115-128, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29980966

RESUMEN

Foreseen climate change is expected to impact on grape composition, both sugar and pigment content. We tested the hypothesis that interactions between main factors associated with climate change (elevated CO2, elevated temperature, and water deficit) decouple sugars and anthocyanins, and explored the possible involvement of vegetative area, photosynthesis, and grape C uploading on the decoupling. Tempranillo grapevine fruit-bearing cuttings were exposed to CO2 (700 vs. 400 ppm), temperature (ambient vs. + 4 °C), and irrigation levels (partial vs. full) in temperature-gradient greenhouses. In a search for mechanistic insights into the underlying processes, experiments 1 and 2 were designed to maximize photosynthesis and enlarge leaf area range among treatments, whereas plant growth was manipulated in order to deliberately down-regulate photosynthesis and control vegetative area in experiments 3 and 4. Towards this aim, treatments were applied either from fruit set to maturity with free vegetation and fully irrigated or at 5-8% of pot capacity (experiments 1 and 2), or from veraison to maturity with controlled vegetation and fully irrigated or at 40% of pot capacity (experiments 3 and 4). Modification of air 13C isotopic composition under elevated CO2 enabled the further characterization of whole C fixation period and C partitioning to grapes. Increases of the grape sugars-to-anthocyanins ratio were highly and positively correlated with photosynthesis and grape 13C labeling, but not with vegetative area. Evidence is presented for photosynthesis, from fruit set to veraison, and grape C uploading, from veraison to maturity, as key processes involved in the establishment and development, respectively, of the grape sugars to anthocyanins decoupling.


Asunto(s)
Antocianinas/metabolismo , Cambio Climático , Fotosíntesis/fisiología , Vitis/fisiología , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Hojas de la Planta/fisiología , Azúcares/metabolismo , Vitis/crecimiento & desarrollo , Vitis/metabolismo
12.
Plant Sci ; 267: 74-83, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29362101

RESUMEN

The intra-varietal genetic diversity of grapevine (Vitis vinifera L.) may be exploited to maintain grape quality under future warm conditions, which may alter grape berry development and composition. The present study assesses the effects of elevated temperature on the development of berry, grape composition and anthocyanins:sugars ratio of thirteen clones of V. vinifera. cv. Tempranillo that differed in length of the ripening period (time from veraison to berry total soluble solids, mainly sugars, of ca. 22 °Brix). Two temperature regimes (24 °C/14 °C or 28 °C/18 °C, day/night) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Elevated temperature hastened berry development, with a greater influence before the onset of ripening, and reduced anthocyanin concentration, colour intensity and titratable acidity. The clones significantly differed in the number of days that elapsed between fruit set and maturity. At the same concentration of total soluble solids, the anthocyanin concentration was lower at 28 °C/18 °C than 24 °C/14 °C, indicating a decoupling effect of elevated temperature during berry ripening. Thermal decoupling was explained by changes in the relative rate of response of anthocyanin and sugar build-up, rather than delayed onset of anthocyanin accumulation. Clones differed in the degree of thermal decoupling, but it was directly associated with differences neither in the length of their ripening period nor in plant vigour.


Asunto(s)
Antocianinas/metabolismo , Calor , Azúcares/metabolismo , Vitis/fisiología , Cambio Climático , Frutas/crecimiento & desarrollo , Frutas/fisiología , Vitis/genética , Vitis/crecimiento & desarrollo
13.
J Plant Physiol ; 174: 97-109, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25462972

RESUMEN

Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress.


Asunto(s)
Aclimatación/efectos de los fármacos , Dióxido de Carbono/farmacología , Carbono/metabolismo , Cambio Climático , Sequías , Fotosíntesis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Isótopos de Carbono , Respiración de la Célula/efectos de los fármacos , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Fluorescencia , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/fisiología , Nitrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura , Vitis/efectos de los fármacos , Vitis/fisiología
14.
J Plant Physiol ; 171(18): 1774-81, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25240322

RESUMEN

Medicago sativa L. (alfalfa) can exhibit photosynthetic down-regulation when grown in greenhouse conditions under elevated atmospheric CO2. This forage legume can establish a double symbiosis with nitrogen fixing bacteria and arbuscular mycorrhizal fungi (AMF), which may increase the carbon sink effect of roots. Our aim was to assess whether the association of alfalfa with AMF can avoid, diminish or delay the photosynthetic acclimation observed in previous studies performed with nodulated plants. The results, however, showed that mycorrhizal (M) alfalfa at the end of their vegetative period had lower carbon (C) discrimination than non-mycorrhizal (NM) controls, indicating photosynthetic acclimation under ECO2 in plants associated with AMF. Decreased C discrimination was due to the acclimation of conductance, since the amount of Rubisco and the expression of genes codifying both large and small subunits of Rubisco were similar or slightly higher in M than in NM plants. Moreover, M alfalfa accumulated a greater amount of soluble sugars in leaves than NM plants, thus favoring a down-regulation effect on photosynthetic rates. The enhanced contents of sugars in leaves coincided with a reduced percentage of arbuscules in roots, suggesting decreased sink of carbohydrates from shoots to roots in M plants. The shorter life cycle of alfalfa associated with AMF in comparison with the NM controls may also be related to the accelerated photosynthetic acclimation in M plants. Further research is needed to clarify to what extent this behavior could be extrapolated to alfalfa cultivated in the field and subjected to periodic cutting of shoots under climatic change scenarios.


Asunto(s)
Dióxido de Carbono/análisis , Medicago sativa/fisiología , Micorrizas/metabolismo , Fotosíntesis , Medicago sativa/microbiología
15.
Funct Plant Biol ; 41(11): 1138-1147, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32481064

RESUMEN

Despite its relevance, few studies to date have analysed the role of harvest index (HI) in the responsiveness of wheat (Triticum spp.) to elevated CO2 concentration ([CO2]) under limited water availability. The goal of the present work was to characterise the role of HI in the physiological responsiveness of durum wheat (Triticum durum Desf.) exposed to elevated [CO2] and terminal (i.e. during grain filling) water stress. For this purpose, the performance of wheat plants with high versus low HI (cvv. Sula and Blanqueta, respectively) was assessed under elevated [CO2] (700µmolmol-1 vs 400µmolmol-1 CO2) and terminal water stress (imposed after ear emergence) in CO2 greenhouses. Leaf carbohydrate build-up combined with limitations in CO2 diffusion (in droughted plants) limited the responsiveness to elevated [CO2] in both cultivars. Elevated [CO2] only increased wheat yield in fully watered Sula plants, where its larger HI prevented an elevated accumulation of total nonstructural carbohydrates. It is likely that the putative shortened grain filling period in plants exposed to water stress also limited the responsiveness of plants to elevated [CO2]. In summary, our study showed that even under optimal water availability conditions, only plants with a high HI responded to elevated [CO2] with increased plant growth, and that terminal drought constrained the responsiveness of wheat plants to elevated [CO2].

16.
J Integr Plant Biol ; 55(8): 721-34, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23480453

RESUMEN

Elevated CO2 leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth. This process is known as photosynthetic downregulation. There is no agreement on the definition of which parameters are the most sensitive for detecting CO2 acclimation. In order to investigate the most sensitive photosynthetic and molecular markers of CO2 acclimation, the effects of elevated CO2, and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains. Plants (Medicago sativa L. cv. Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG). At the end of the experiment, all plants showed acclimation in both seasons, especially under elevated summer temperatures. This was probably due to the lower nitrogen (N) availability caused by decreased N2-fixation under higher temperatures. Photosynthesis measured at growth CO2 concentration, rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation. Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis. Despite the sensitivity of rubisco content as a marker of acclimation, it was not coordinated with gene expression, possibly due to a lag between gene transcription and protein translation.


Asunto(s)
Dióxido de Carbono/fisiología , Medicago sativa/metabolismo , Fotosíntesis , Biomarcadores/metabolismo , Cambio Climático , Regulación hacia Abajo , Calor , Medicago sativa/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis
17.
J Plant Physiol ; 169(8): 782-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22369772

RESUMEN

Elevated CO(2) may decrease alfalfa forage quality and in vitro digestibility through a drop in crude protein and an enhancement of fibre content. The aim of the present study was to analyse the effect of elevated CO(2), elevated temperature and Sinorhizobium meliloti strains (102F78, 102F34 and 1032 GMI) on alfalfa yield, forage quality and in vitro dry matter digestibility. This objective is in line with the selection of S. meliloti strains in order to maintain high forage yield and quality under future climate conditions. Plants inoculated with the 102F34 strain showed more DM production than those inoculated with 1032GMI; however, these strains did not show significant differences with 102F78 plants. Neutral or acid detergent fibres were not enhanced in plants inoculated with the 102F34 strain under elevated CO(2) or temperature and hence, in vitro dry matter digestibility was unaffected. Crude protein content, an indicator of forage quality, was negatively related to shoot yield. Plants inoculated with 102F78 showed a similar shoot yield to those inoculated with 102F34, but had higher crude protein content at elevated CO(2) and temperature. Under these climate change conditions, 102F78 inoculated plants produced higher quality forage. However, the higher digestibility of plants inoculated with the 102F34 strain under any CO(2) or temperature conditions makes them more suitable for growing under climate change conditions. In general, elevated CO(2) in combination with high temperature (Climate Change scenario) reduced IVDMD and CP content and enhanced fibre content, which means that animal production will be negatively affected.


Asunto(s)
Alimentación Animal/análisis , Alimentación Animal/microbiología , Dióxido de Carbono/farmacología , Cambio Climático , Medicago sativa/química , Medicago sativa/microbiología , Sinorhizobium meliloti/clasificación , Productos Agrícolas/crecimiento & desarrollo , Fibras de la Dieta/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Fijación del Nitrógeno/fisiología , Valor Nutritivo , Hojas de la Planta/química , Proteínas de Plantas/análisis , Brotes de la Planta/química , Nódulos de las Raíces de las Plantas/microbiología , Especificidad de la Especie , Temperatura
18.
Physiol Plant ; 144(2): 99-110, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21929631

RESUMEN

Photosynthetic carbon fixation (A(N) ) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O2, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO2, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A(N) + respiration + photorespiration) were observed in plants treated with elevated CO2 and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H2O2 and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO2 and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation.


Asunto(s)
Antioxidantes/metabolismo , Dióxido de Carbono/farmacología , Cambio Climático , Sequías , Estrés Oxidativo/efectos de los fármacos , Temperatura , Vitis/enzimología , Clorofila/metabolismo , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vitis/efectos de los fármacos , Vitis/metabolismo
19.
J Plant Physiol ; 167(18): 1558-65, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20708820

RESUMEN

Increasing atmospheric CO2 concentrations are expected to enhance plant photosynthesis and yield. Nevertheless, after long-term exposure, plants acclimate and show a reduction in photosynthetic activity (called down-regulation), which may cause a reduction in potential yield. Some authors suggest that down-regulation is related to nutrient availability, and more specifically, to an insufficient plant C sink strength caused by limited N supply. In this paper, we tested whether or not N availability prevents down-regulation of photosynthesis in nodulated alfalfa plants (Medicago sativa L.). To do so, we examined the effect of the addition of different levels of NH4NO3 (0, 10, and 15 mM) to 30-day-old nodulated alfalfa plants exposed to ambient (approximately 400 µmol mol⁻¹) or elevated CO2 (700 µmol mol⁻¹) during a period of 1 month in growth chambers. After 2 weeks of exposure to elevated CO2, no significant differences were observed in plant growth or photosynthesis rates. After 4 weeks of treatment, exclusively N2 fixing alfalfa plants (0 mM NH4NO3) showed significant decreases in photosynthesis and Vc(max). Photosynthetic down-regulation of these plants was caused by the C/N imbalance as reflected by the carbohydrate and N data. On the other hand, plants supplied with 15 mM NH4NO3 grown under elevated CO2 maintained high photosynthetic rates owing to their superior C/N adjustment. The intermediate N treatment, 10 mM NH4NO3, also showed photosynthetic down-regulation, but to a lesser degree than with 0 mM treatment. The present study clearly shows that external N supply can reduce or even avoid acclimation of photosynthesis to elevated CO2 as a consequence of the increase in C sink strength associated with N availability.


Asunto(s)
Dióxido de Carbono/metabolismo , Medicago sativa/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Isótopos de Carbono/metabolismo
20.
J Plant Physiol ; 167(2): 114-20, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19744745

RESUMEN

The predicted worldwide increase of arid areas and water stress episodes will strongly affect crop production. Numerous plants have developed specific morphological and physiological mechanisms as a means to increase their tolerance to drought. Water stress modifies dry matter partitioning and morphological components such as leaf area ratio (LAR), specific leaf area (SLA) and leaf weight ratio (LWR). Alfalfa has a wide-ranging distribution and is thus expected to show differing levels of drought tolerance. The aim of our study was to determine the effect of progressive drought and subsequent recovery in four alfalfa genotypes differing in drought sensitivity: three cultivars adapted to a Mediterranean climate, Tafilalet (TA), Tierra de Campos (TC) and Moapa (MO), and another representative of an oceanic climate, Europe (EU). Mild drought did not affect biomass production or water status in the studied varieties. Under moderate drought conditions, TA and MO showed decreased leaf production, which may help them to maintain relative water content (RWC). Despite observations that water stress did not affect root growth, after the recovery period, TA increased its root biomass, making higher water soil prospecting possible. Mediterranean cultivars modified LAR and SLA depending on water availability, whereas EU alters LWR. At the end of the experiment, TC was the most productive cultivar, but severe drought did not predict differences among cultivars. Severe water stress increased the root/shoot ratio in order to diminish water consumption and increase absorption of water. In spite of all cultivars showing a decreased LWR, TA also decreased SLA, which may suggest higher drought resistance. Morphological traits from Mediterranean cultivars, including the ability to alter SLA or LAR may be used for drought-tolerant cultivar improvement.


Asunto(s)
Biomasa , Sequías , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Medicago sativa/genética , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...