Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337278

RESUMEN

The essential role of active packaging is food quality improvement, which results in an extension of shelf life. Active packaging can also further enhance distribution from the origin point, and contributes to food waste reduction, offering greater sustainability. In this study, we introduced a new method for obtaining cellulose-based active packages, combining gamma irradiation as an eco-friendly activation process, and clove essential oil and cold-pressed rosehip seed oil as bioactive agents. Newly obtained bioactive materials were evaluated to assess their structural, hydrophobic, and morphological properties, thermal stability, and antioxidant and antimicrobial properties. The results showed that the plant oils induced their antimicrobial effects on paper, using both in vitro tests, against several bacterial strains (Gram-positive bacteria Listeria monocytogenes and Gram-negative bacteria Salmonella enteritidis and Escherichia coli), and in vivo tests, on fresh cheese curd and beef. Moreover, these oils can help control foodborne pathogens, which leads to extended shelf life.

2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835080

RESUMEN

The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.


Asunto(s)
Ácido Láctico , Polímeros , Polímeros/química , Aceite de Coco , Ácido Láctico/química , Poliésteres/química
3.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080683

RESUMEN

Bio-based plasticizers derived from renewable resources represent a sustainable replacement for petrochemical-based plasticizers. Vegetable oils are widely available, non-toxic and biodegradable, resistant to evaporation, mostly colorless and stable to light and heat, and are a suitable alternative for phthalate plasticizers. Plasticized poly(lactic acid) (PLA) materials containing 5 wt%, 10 wt%, 15 wt% and 20 wt% natural castor oil (R) were prepared by melt blending to improve the ductility of PLA. Three castor oil adducts with maleic anhydride (MA), methyl nadic anhydride (methyl-5-norbornene-2,3-dicarboxylic anhydride) (NA) and hexahydro-4-methylphthalic anhydride (HA), previously synthesized, were incorporated in a concentration of 15 wt% each in PLA and compared with PLA plasticized with natural R. The physico-chemical properties of PLA/R blends were investigated by means of processability, chemical structure, surface wettability, mechanical, rheological and thermal characteristics. The addition of natural and modified R significantly improved the melt processing by decreasing the melt viscosity by ~95%, increased the surface hydrophobicity, enhanced the flexibility by ~14 times in the case of PLA/20R blend and ~11 times in the case of PLA/15R-MA blend as compared with neat PLA. The TG/DTG results showed that the natural R used up to 20 wt% could significantly improve the thermal stability of PLA, similar to the maleic anhydride-modified R. Based on the obtained results, up to 20 wt% natural R and 15 wt% MA-, HA- or NA-modified R might be used as environmentally friendly plasticizers that can improve the overall properties of PLA, depending on the intended food packaging applications.

4.
Molecules ; 26(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34361651

RESUMEN

Here we introduce a new method aiming the immobilization of bioactive principles onto polymeric substrates, combining a surface activation and emulsion entrapment approach. Natural products with antimicrobial/antioxidant properties (essential oil from Syzygium aromaticum-clove and vegetal oil from Argania spinosa L-argan) were stabilized in emulsions with chitosan, a natural biodegradable polymer that has antimicrobial activity. The emulsions were laid on poly(lactic acid) (PLA), a synthetic biodegradable plastic from renewable resources, which was previously activated by plasma treatment. Bioactive materials were obtained, with low permeability for oxygen, high radical scavenging activity and strong inhibition of growth for Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli bacteria. Clove oil was better dispersed in a more stable emulsion (no separation after six months) compared with argan oil. This leads to a compact and finely structured coating, with better overall properties. While both clove and argan oils are highly hydrophobic, the coatings showed increased hydrophilicity, especially for argan, due to preferential interactions with different functional groups in chitosan. The PLA films coated with oil-loaded chitosan showed promising results in retarding the food spoilage of meat, and especially cheese. Argan, and in particular, clove oil offered good UV protection, suitable for sterilization purposes. Therefore, using the emulsion stabilization of bioactive principles and immobilization onto plasma activated polymeric surfaces we obtained a bioactive material that combines the physical properties and the biodegradability of PLA with the antibacterial activity of chitosan and the antioxidant function of vegetal oils. This prevents microbial growth and food oxidation and could open new perspectives in the field of food packaging materials.


Asunto(s)
Quitosano , Aceite de Clavo , Emulsiones , Microbiología de Alimentos/métodos , Embalaje de Alimentos/métodos , Inocuidad de los Alimentos/métodos , Aceites de Plantas , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Quitosano/farmacología , Aceite de Clavo/química , Aceite de Clavo/farmacología , Emulsiones/química , Emulsiones/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología
5.
Materials (Basel) ; 10(1)2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28772407

RESUMEN

The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs) (thyme, clove, rosemary, and tea tree) from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin-Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi-Fusarium graminearum, Penicillium corylophilum, and Aspergillus brasiliensis-and three potential pathogenic food bacteria-Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes-using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA