Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1438031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070914

RESUMEN

Genetic transformation of many plant species relies on in vitro tissue culture-based approaches. This can be a labor-intensive process, requiring aseptic conditions and regenerating often recalcitrant species from tissue culture. Here, we have optimized an in planta transformation protocol to rapidly transform commercial citrus cultivars, bypassing the need for tissue culture. As a proof of concept, we used in planta transformation to introduce CRISPR/Cas9 constructs into Limoneira 8A Lisbon lemon and Pineapple sweet orange, cultivars that are challenging to transform with conventional techniques. Using our optimized protocol, the regeneration rate was significantly increased from 4.8% to over 95%, resulting in multiple gene-edited lines in lemon. We also successfully recovered gene-edited Pineapple sweet orange lines using this protocol; the transformation efficiency for these cultivars ranged between 0.63% and 4.17%. Remarkably, these lines were obtained within three months, making this in planta protocol a rapid methodology to obtain transformed citrus plants. This approach can rapidly and effectively introduce key genetic changes into a wide variety of citrus cultivars.

2.
PLoS Genet ; 20(3): e1011203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442104

RESUMEN

A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , División Celular/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Flores
3.
Plant J ; 116(3): 855-870, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37548081

RESUMEN

Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.


Asunto(s)
Arabidopsis , Celulosa , Celulosa/metabolismo , Lateralidad Funcional , Ramnogalacturonanos/análisis , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Pared Celular/metabolismo
5.
Front Plant Sci ; 12: 709360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295349

RESUMEN

Epigenetic modifications include histone modifications and DNA methylation; such modifications can induce heritable changes in gene expression by altering DNA accessibility and chromatin structure. A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete picture of how epigenetic factors can regulate developmental events such as organogenesis. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this minireview, we summarize recent studies demonstrating the epigenetic control of gene expression during various developmental transitions, and how such regulatory mechanisms can potentially act in petal growth and differentiation.

8.
Curr Biol ; 31(10): 2237-2242.e4, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761317

RESUMEN

Differential regulation of stem cell activity in shoot meristems contributes to the wide variation in shoot architecture.1-3 In most Citrus species, a thorn meristem and a dormant axillary meristem co-localize at each leaf base, offset from each other in a spiral phyllotactic pattern. We recently identified THORN IDENTITY1 (TI1) and THORN IDENTITY2 (TI2), encoding TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, as necessary for the termination of meristem proliferation and concomitant thorn production in Citrus.4 However, how the dormant axillary meristem at the same leaf axil maintains stem cell activity is still unknown. The phosphatidylethanolamine-binding protein (PEBP)-type transcription factors CENTRORADIALIS (CEN) and TERMINAL FLOWER1 (TFL1) maintain inflorescence meristem indeterminacy in many plant species by antagonizing floral meristem identity regulators.5-9 Here, we show that, in Citrus, Citrus CEN (CsCEN) maintains vegetative axillary meristem indeterminacy by antagonizing TI1. CsCEN is expressed in the axillary meristem, but not in the thorn meristem. Disruption of CsCEN function results in termination of the stem cell activity and conversion of dormant axillary meristems into thorns, although ectopic overexpression of CsCEN represses TI1 expression and converts thorns into dormant buds, a phenotype similar to the ti1 mutant. We further show that CsCEN interacts with Citrus FD (CsFD) to repress TI1 expression. CsCEN activity depends on the function of TI1 and TI2, as mutations in TI1 and TI2 rescue the cscen mutant phenotype. We suggest that the antagonistic roles of CsCEN and TI1 define the pattern of axillary meristem determinacy, which shapes vegetative Citrus tree shoot architecture.


Asunto(s)
Citrus , Meristema , Proteínas de Plantas , Factores de Transcripción , Citrus/genética , Citrus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética
9.
J Exp Bot ; 72(5): 1809-1821, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33258902

RESUMEN

Development of leaf margins is an important process in leaf morphogenesis. CIN-clade TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PCF) transcription factors are known to have redundant roles in specifying leaf margins, but the specific mechanisms through which individual TCP genes function remain elusive. In this study, we report that the CIN-TCP gene TCP5 is involved in repressing the initiation and outgrowth of leaf serrations by activating two key regulators of margin development, the Class II KNOX factor KNAT3 and BEL-like SAW1. Specifically, TCP5 directly promotes the transcription of KNAT3 and indirectly activates the expression of SAW1. We also show that TCP5 regulates KNAT3 and SAW1 in a temporal- and spatial- specific manner that is largely in accordance with the progress of formation of serrations. This regulation might serve as a key mechanism in patterning margin morphogenesis and in sculpting the final form of the leaf.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Curr Biol ; 30(15): 2951-2961.e5, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32559443

RESUMEN

Thorns arise from axillary shoot apical meristems that proliferate for a time and then terminally differentiate into a sharp tip. Like other meristems, thorn meristems contain stem cells but, in the case of thorns, these stem cells undergo a programmed cessation of proliferative activity. Using Citrus, we characterize a gene network necessary for thorn development. We identify two Citrus genes, THORN IDENTITY1 (TI1) and THORN IDENTITY2 (TI2), encoding TCP transcription factors, as necessary for stem cell quiescence and thorn identity. Disruption of TI1 and TI2 function results in reactivation of stem cells and concomitant conversion of thorns to branches. Expression of WUSCHEL (WUS) defines the shoot stem cell niche in the apical meristems of many angiosperm species; we show that TI1 binds to the Citrus WUS promoter and negatively regulates its expression to terminate stem cell proliferation. We propose that shifts in the timing and function of components of this gene network can account for the evolution of Citrus thorn identity. Modulating this pathway can significantly alter plant architecture and could be leveraged to improve crop yields.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Citrus/genética , Citrus/fisiología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Meristema/genética , Meristema/fisiología , Mutación , Fenómenos Fisiológicos de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Células Madre/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Citrus/anatomía & histología , Citrus/citología , Meristema/citología
11.
Plant Physiol ; 182(1): 159-166, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31690709

RESUMEN

The phytochrome B (phyB) photoreceptor stimulates light responses in plants in part by inactivating repressors of light responses, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Activated phyB inhibits PIF3 by rapid protein degradation and decreased transcription. PIF3 protein degradation is mediated by EIN3-BINDING F-BOX PROTEIN (EBF) and LIGHT-RESPONSE BTB (LRB) E3 ligases, the latter of which simultaneously targets phyB for degradation. In this study, we show that PIF3 levels are additionally regulated by alternative splicing and protein translation in Arabidopsis (Arabidopsis thaliana). Overaccumulation of photo-activated phyB, which occurs in the mutant defective for LRB genes under continuous red light, induces a specific alternative splicing of PIF3 that results in retention of an intron in the 5' untranslated region of PIF3 mRNA. In turn, the upstream open reading frames contained within this intron inhibit PIF3 protein synthesis. The phyB-dependent alternative splicing of PIF3 is diurnally regulated under the short-day light cycle. We hypothesize that this reversible regulatory mechanism may be utilized to fine tune the level of PIF3 protein in light-grown plants and may contribute to the oscillation of PIF3 protein abundance under the short-day environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Intrones/genética , Fitocromo B/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo B/genética
12.
Plant Cell ; 31(5): 1155-1170, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30914467

RESUMEN

Light elicits different growth responses in different organs of plants. These organ-specific responses are prominently displayed during de-etiolation. While major light-responsive components and early signaling pathways in this process have been identified, this information has yet to explain how organ-specific light responses are achieved. Here, we report that members of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factor family participate in photomorphogenesis and facilitate light-induced cotyledon opening in Arabidopsis (Arabidopsis thaliana). Chromatin immunoprecipitation sequencing and RNA sequencing analyses indicated that TCP4 targets a number of SMALL AUXIN UPREGULATED RNA (SAUR) genes that have previously been shown to exhibit organ-specific, light-responsive expression. We demonstrate that TCP4-like transcription factors, which are predominantly expressed in the cotyledons of both light- and dark-grown seedlings, activate SAUR16 and SAUR50 expression in response to light. Light regulates the binding of TCP4 to the promoters of SAUR14, SAUR16, and SAUR50 through PHYTOCHROME-INTERACTING FACTORs (PIFs). PIF3, which accumulates in etiolated seedlings and its levels rapidly decline upon light exposure, also binds to the SAUR16 and SAUR50 promoters, while suppressing the binding of TCP4 to these promoters in the dark. Our study reveals that the interplay between light-responsive factors PIFs and the developmental regulator TCP4 determines the cotyledon-specific light regulation of SAUR16 and SAUR50, which contributes to cotyledon closure and opening before and after de-etiolation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fitocromo/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cotiledón/genética , Cotiledón/fisiología , Cotiledón/efectos de la radiación , Etiolado/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Plantones/genética , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia Arriba
13.
Plant J ; 94(4): 649-660, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29505161

RESUMEN

Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol-independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose-containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP-l-rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose-containing cell wall polysaccharides in the morphogenesis of epidermal cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Flavonoles/metabolismo , Glucosiltransferasas/metabolismo , Ramnosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Cotiledón/enzimología , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Mutación , Fenotipo , Epidermis de la Planta/enzimología , Epidermis de la Planta/genética , Polisacáridos/metabolismo , Azúcares de Uridina Difosfato/metabolismo
14.
Plant J ; 93(2): 377-386, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161464

RESUMEN

The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9.


Asunto(s)
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Streptococcus pyogenes/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Calor , Mutagénesis Sitio-Dirigida , Mutación , Plantas Modificadas Genéticamente , Estrés Fisiológico
15.
Plant Signal Behav ; 12(11): e1382794, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29072548

RESUMEN

Plants consist of many different cell types with specific shapes optimized for their particular functions. For example, most flowering plants have conically shaped epidermal cells on the upper surface of their petals that are important for pollinator attraction. The control of cell morphology in organs such as roots and leaves has been extensively studied, but much less is known about the genes that promote conical expansion of petal epidermal cells. We have developed a technique to rapidly assay the morphology of conical petal epidermal cells, and we employed this method in an unbiased genetic screen to identify mutants that alter the development of these cells. Mutants isolated in this screen affected cell shape, cell size, cuticle synthesis, and cellular chirality. This approach allowed for the identification of novel cellular components that are critical for the morphology of conical petal cells, and demonstrates the usefulness of petal epidermal cells as a model system for studying cellular morphogenesis.


Asunto(s)
Flores/anatomía & histología , Flores/genética , Mutación/genética , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Poliploidía
16.
Trends Plant Sci ; 22(10): 815-817, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28886911

RESUMEN

The WUSCHEL (WUS) gene is necessary for the maintenance of stem cells in the shoot apical meristem. Four recent reports show that cytokinin responsive type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) directly activate WUS expression, providing a long-awaited explanation for how cytokinin influences the maintenance of the stem cell niche.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/metabolismo , Nicho de Células Madre , Células Madre , Factores de Transcripción/genética
18.
Curr Biol ; 27(15): 2248-2259.e4, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28736166

RESUMEN

Although specific organs in some plant species exhibit helical growth patterns of fixed or variable handedness, most plant organs are not helical. Here we report that mutations in Arabidopsis RHAMNOSE BIOSYNTHESIS 1 (RHM1) cause dramatic left-handed helical growth of petal epidermal cells, leading to left-handed twisted petals. rhm1 mutant roots also display left-handed growth. Furthermore, we find that RHM1 is required to promote epidermal cell expansion. RHM1 encodes a UDP-L-rhamnose synthase, and rhm1 mutations affect synthesis of the pectic polysaccharide rhamnogalacturonan-I. Unlike other mutants that exhibit helical growth of fixed handedness, the orientation of cortical microtubule arrays is unaltered in rhm1 mutants. Our findings reveal a novel source of left-handed plant growth caused by changes in cell wall composition that is independent of microtubule orientation. We propose that an important function of rhamnose-containing cell wall polymers is to suppress helical twisting of expanding plant cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/química , Glucosiltransferasas/genética , Microtúbulos/metabolismo , Mutación , Pectinas/metabolismo , Ramnosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Glucosiltransferasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polímeros/metabolismo
19.
Nucleic Acids Res ; 45(6): 3253-3265, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28175342

RESUMEN

Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation.


Asunto(s)
Arabidopsis/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Código de Histonas , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional
20.
J Exp Bot ; 67(22): 6473-6480, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27838638

RESUMEN

Plant organ growth requires the proper transition from cell proliferation to cell expansion and differentiation. The CIN-TCP transcription factor gene TCP4 and its post-transcriptional regulator microRNA319 play a pivotal role in this process. In this study, we identified a pathway in which the product of the C2H2 zinc finger gene RABBIT EARS (RBE) regulates the transcription of TCP4 during Arabidopsis (Arabidopsis thaliana) petal development. RBE directly represses TCP4 during the early stages of petal development; this contributes to the role of RBE in controlling the growth of petal primordia. We also found that the rbe-1 mutant strongly enhanced the petal phenotypes of tcp4soj6 and mir319a, two mutants with compromised miR319 regulation of TCP4 Our results show that transcriptional and post-transcriptional regulation function together to pattern the spatial and temporal expression of TCP4 This in turn controls petal size and shape in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Arabidopsis/fisiología , Inmunoprecipitación de Cromatina , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hibridación in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA