Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 74: 178-190, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36336174

RESUMEN

3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensively studied as a model organism for biopolymer production. Here, we engineered C. necator H16 for 3-HP biosynthesis from its central metabolism. Wild type C. necator H16 can use 3-HP as a carbon source, a highly undesirable trait for a 3-HP production chassis. However, deletion of its three (methyl-)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) resulted in a strain that cannot grow on 3-HP as the sole carbon source, and this strain was selected as our production host. A stepwise approach was used to construct pathways for 3-HP production via ß-alanine. Two additional gene deletion targets were identified during the pathway construction process. Deletion of the 3-hydroxypropionate dehydrogenase, encoded by hpdH, prevented the re-consumption of the 3-HP produced by our engineered strains, while deletion of gdhA1, annotated as a glutamate dehydrogenase, prevented the utilization of aspartate as a carbon source, one of the key pathway intermediates. The final strain carrying these deletions was able to produce up to 8 mM 3-HP heterotrophically. Furthermore, an engineered strain was able to produce 0.5 mM 3-HP under autotrophic conditions, using CO2 as sole carbon source. These results form the basis for establishing C. necator H16 as an efficient platform for the production of 3-HP and 3-HP-containing polymers.


Asunto(s)
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Carbono/metabolismo , Polímeros/metabolismo
2.
Microb Cell Fact ; 18(1): 164, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31597569

RESUMEN

BACKGROUND: In comparison to synthetically derived surfactants, biosurfactants produced from microbial culture are generally regarded by industry as being more sustainable and possess lower toxicity. One major class of biosurfactants are rhamnolipids primarily produced by Pseudomonas aeruginosa. Due to its pathogenicity rhamnolipid synthesis by this species is viewed as being commercially nonviable, as such there is a significant focus to identify alternative producers of rhamnolipids. RESULTS: To achieve this, we phenotypically screened marine bacteria for biosurfactant production resulting in the identification of rhamnolipid biosynthesis in a species belonging to the Marinobacter genus. Preliminary screening showed the strain to reduce surface tension of cell-free supernatant to 31.0 mN m-1. A full-factorial design was carried out to assess the effects of pH and sea salt concentration for optimising biosurfactant production. When cultured in optimised media Marinobacter sp. MCTG107b produced 740 ± 28.3 mg L-1 of biosurfactant after 96 h of growth. Characterisation of this biosurfactant using both HPLC-MS and tandem MS showed it to be a mixture of different rhamnolipids, with di-rhamnolipid, Rha-Rha-C10-C10 being the most predominant congener. The strain exhibited no pathogenicity when tested using the Galleria mellonella infection model. CONCLUSIONS: This study expands the paradigm of rhamnolipid biosynthesis to a new genus of bacterium from the marine environment. Rhamnolipids produced from Marinobacter have prospects for industrial application due to their potential to be synthesised from cheap, renewable feed stocks and significantly reduced pathogenicity compared to P. aeruginosa strains.


Asunto(s)
Glucolípidos/biosíntesis , Marinobacter/metabolismo , Tensoactivos/química , Fermentación
3.
Biotechnol Lett ; 40(11-12): 1441-1457, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30145666

RESUMEN

Surfactants and emulsifiers are surface-active compounds (SACs) which play an important role in various industrial processes and products due to their interfacial properties. Many of the chemical surfactants in use today are produced from non-renewable petrochemical feedstocks, while biosurfactants (BS) produced by microorganisms from renewable feedstocks are considered viable alternatives to petroleum based surfactants, due to their biodegradability and eco-friendly nature. However, some well-characterised BS producers are pathogenic and therefore, not appropriate for scaled-up production. Marine-derived BS have been found to be produced by non-pathogenic organisms making them attractive possibilities for exploitation in commercial products. Additionally, BS produced from marine bacteria may show excellent activity at extreme conditions (temperature, pH and salinity). Despite being non-pathogenic, marine-derived BS have not been exploited commercially due to their low yields, insufficient structural elucidation and uncharacterised genes. Therefore, optimization of BS production conditions in marine bacteria, characterization of the compounds produced as well as the genes involved in the biosynthesis are necessary to improve cost-efficiency and realise the industrial demands of SACs.


Asunto(s)
Bacterias/química , Biodegradación Ambiental , Tensoactivos , Organismos Acuáticos/química , Emulsionantes
4.
Appl Microbiol Biotechnol ; 102(14): 6163-6174, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29752487

RESUMEN

Rhamnolipid production was monitored for a period of 216 h using different substrates in Pseudomonas aeruginosa PAO1 and Burkholderia thailandensis E264 which showed comparable crude yields attained by both after 216 h. The crude yield for P. aeruginosa, however, was significantly higher at the early stages of fermentation (72 or 144 h). Additionally, P. aeruginosa produced rhamnolipid with odd and even carbon chain lipid moieties using odd carbon chain fatty acid substrates (up to 45.97 and 67.57%, respectively). In contrast, B. thailandensis produced rhamnolipid with predominantly even carbon chain lipid moieties (up to 99.26). These results indicate the use of the fatty acid synthesis (FAS II) pathway as the main source of lipid precursors in rhamnolipid biosynthesis by B. thailandensis. Isotope tracing using 0.25% stearic acid - d 35 + 1% glycerol as carbon substrate showed a single pattern of deuterium incorporation: with predominantly less than 15 deuterium atoms incorporated into a single Di-C14-C14 rhamnolipid molecule. This further indicates that the FAS II pathway is the main source of the lipid precursor in rhamnolipid biosynthesis by B. thailandensis. The pathogenicity of these strains was also assessed, and results showed that B. thailandensis is significantly less pathogenic than P. aeruginosa with an LC50 at 24 h > 2500, approximately three logs higher than P. aeruginosa using the Galleria mellonella larva model.


Asunto(s)
Vías Biosintéticas , Burkholderia/metabolismo , Ácidos Grasos/biosíntesis , Glucolípidos/biosíntesis , Proteínas Bacterianas/metabolismo , Fermentación , Isótopos , Metabolismo de los Lípidos , Lípidos/química , Pseudomonas aeruginosa/metabolismo
5.
Appl Microbiol Biotechnol ; 101(10): 3941-3951, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28386631

RESUMEN

High production cost and potential pathogenicity of Pseudomonas aeruginosa, commonly used for rhamnolipid synthesis, have led to extensive research for safer producing strains and cost-effective production methods. This has resulted in numerous research publications claiming new non-pathogenic producing strains and novel production techniques many of which are unfortunately without proper characterisation of product and/or producing strain/s. Genes responsible for rhamnolipid production have only been confirmed in P. aeruginosa, Burkholderia thailandensis and Burkholderia pseudomallei. Comparing yields in different publications is also generally unreliable especially when different methodologies were used for rhamnolipid quantification. After reviewing the literature in this area, we strongly feel that numerous research outputs have insufficient evidence to support claims of rhamnolipid-producing strains and/or yields. We therefore recommend that standards should be set for reporting new rhamnolipid-producing strains and production yields. These should include (1) molecular and bioinformatic tools to fully characterise new microbial isolates and confirm the presence of the rhamnolipid rhl genes for all bacterial strains, (2) using gravimetric methods to quantify crude yields and (3) use of a calibrated method (high-performance liquid chromatography or ultra-performance liquid chromatography) for absolute quantitative yield determination.


Asunto(s)
Bacterias/metabolismo , Burkholderia/metabolismo , Glucolípidos/biosíntesis , Pseudomonas aeruginosa/metabolismo , Edición/normas , Bacterias/genética , Burkholderia/genética , Cromatografía Líquida de Alta Presión , Fermentación , Glucolípidos/aislamiento & purificación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Tensoactivos
6.
Int J Mol Sci ; 17(7)2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27447619

RESUMEN

Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.


Asunto(s)
Bacterias/metabolismo , Carbono/química , Polihidroxialcanoatos/biosíntesis , Biocombustibles , Fermentación , Humanos
7.
Materials (Basel) ; 9(5)2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-28773492

RESUMEN

We report on the ability of bacteria to produce biodegradable polyhydroxyalkanoates (PHA) using oxidized polyethylene wax (O-PEW) as a novel carbon source. The O-PEW was obtained in a process that used air or oxygen as an oxidizing agent. R. eutropha H16 was grown for 48 h in either tryptone soya broth (TSB) or basal salts medium (BSM) supplemented with O-PEW and monitored by viable counting. Study revealed that biomass and PHA production was higher in TSB supplemented with O-PEW compared with TSB only. The biopolymers obtained were preliminary characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The detailed structural evaluation at the molecular level was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The study revealed that, when TSB was supplemented with O-PEW, bacteria produced PHA which contained 3-hydroxybutyrate and up to 3 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units. The ESI-MS/MS enabled the PHA characterization when the content of 3-hydroxybutyrate was high and the appearance of other PHA repeating units was very low.

8.
Materials (Basel) ; 9(1)2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28787828

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA) and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

9.
Microbiology (Reading) ; 161(Pt 1): 1-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25288645

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made up of repeating units of l-glutamic acid, d-glutamic acid or both. γ-PGA can exhibit different properties (conformational states, enantiomeric properties and molecular mass). Owing to its biodegradable, non-toxic and non-immunogenic properties, it has been used successfully in the food, medical and wastewater industries. Amongst other novel applications, it has the potential to be used for protein crystallization, as a soft tissue adhesive and a non-viral vector for safe gene delivery. This review focuses on the production, properties and applications of γ-PGA. Each application of γ-PGA utilizes specific properties attributed to various forms of γ-PGA. As a result of its growing applications, more strains of bacteria need to be investigated for γ-PGA production to obtain high yields of γ-PGA with different properties. Many medical applications (especially drug delivery) have exploited α-PGA. As γ-PGA is essentially different from α-PGA (i.e. it does not involve a chemical modification step and is not susceptible to proteases), it could be better utilized for such medical applications. Optimization of γ-PGA with respect to cost of production, molecular mass and conformational/enantiomeric properties is a major step in making its application practical. Analyses of γ-PGA production and knowledge of the enzymes and genes involved in γ-PGA production will not only help increase productivity whilst reducing the cost of production, but also help to understand the mechanism by which γ-PGA is effective in numerous applications.


Asunto(s)
Ácido Poliglutámico/análogos & derivados , Bacillus/genética , Bacillus/metabolismo , Sistemas de Liberación de Medicamentos , Fermentación , Microbiología de Alimentos , Conformación Molecular , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/química , Ácido Poliglutámico/metabolismo , Polimerizacion
10.
AMB Express ; 3(1): 36, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23829836

RESUMEN

It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...