Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39126583

RESUMEN

Plastic products are now essential commodities, yet their widespread disposal leads to environmental and human health effects, particularly in developing nations. Therefore, developing nations require comprehensive studies to assess the current state of plastic and plastic waste production to enhance plastic waste management practices. This review analyzes the import and export of plastic and the production of plastic waste in Rwanda, aiming to improve waste management practices. This review used open-access papers, reports, and websites dealing with plastic waste management. In this review, 58 articles from the Web of Science and 86 from other search engines were consulted to write this review. The findings revealed that the daily estimated plastic waste produced per person ranges between 0.012 and 0.056 kg. The estimated amount of plastic waste generated per person per year in Rwanda could be between 4.38 and 20.44 kg. Plastic waste accounts for between 1 and 8% of the total municipal solid waste produced per person per day in the country, which ranges from 219 to 255.5 kg. The average annual amount of imported plastics could reach 568.2881 tons, whereas the average quantity of exported plastics could reach 103.7414 tons. This shows that plastic management practices have not yet adopted technically advanced or improved practices, which should concern efforts to protect our environment. This study suggests approaches that can vastly improve plastic waste management and potentially open massive opportunities for the people of Rwanda.

2.
Environ Sci Pollut Res Int ; 31(19): 28321-28340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538998

RESUMEN

The presence of heavy metal ions in water environments has raised significant concerns, necessitating practical solutions for their complete removal. In this study, a combination of adsorption and electrocoagulation (ADS + EC) techniques was introduced as an efficient approach for removing high concentrations of nickel ions (Ni2+) from aqueous solutions, employing low-cost sunflower seed shell biochar (SSSB). The combined techniques demonstrated superior removal efficiency compared to individual methods. The synthesized SSSB was characterized using SEM, FT-IR, XRD, N2-adsorption-desorption isotherms, XPS, and TEM. Batch processes were optimized by investigating pH, adsorbent dosage, initial nickel concentration, electrode effects, and current density. An aluminum (Al) electrode electrocoagulated particles and removed residual Ni2+ after adsorption. Kinetic and isotherm models examined Ni2+ adsorption and electrocoagulation coupling with SSSB-based adsorbent. The results indicated that the kinetic data fit well with a pseudo-second-order model, while the experimental equilibrium adsorption data conformed to a Langmuir isotherm under optimized conditions. The maximum adsorption capacity of the activated sunflower seed shell was determined to be 44.247 mg.g-1. The highest nickel ion removal efficiency of 99.98% was observed at initial pH values of 6.0 for ADS and 4.0 for ADS/EC; initial Ni2+ concentrations of 30.0 mg/L and 1.5 g/L of SSSB; initial current densities of 0.59 mA/cm2 and 1.32 kWh/m3 were also found to be optimal. The mechanisms involved in the removal of Ni2+ from wastewater were also examined in this research. These findings suggest that the adsorption-assisted electrocoagulation technique has a remarkable capacity for the cost-effective removal of heavy metals from various wastewater sources.


Asunto(s)
Carbón Orgánico , Níquel , Aguas Residuales , Contaminantes Químicos del Agua , Níquel/química , Adsorción , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Cinética , Purificación del Agua/métodos , Helianthus/química , Electrocoagulación/métodos
3.
Environ Sci Pollut Res Int ; 30(32): 77959-77980, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37291354

RESUMEN

Electric and electronic equipment (EEE) consumption has grown to worrisome proportions in developing countries (DCS), resulting in massive amounts of electrical and electronic waste (e-waste) being produced. A diagnosis of e-waste proliferation is required for its sustainable management plan in Rwanda. This review is based on open-access papers with e-waste as a keyword, the present situation of EEE, and e-waste in Rwanda. The need for various information communication and technology (ICT) tools, such as end-user devices, cooling-system devices, network equipment, and telecommunication devices, is strongly encouraged by Rwandan national plans, which deem ICT as a vital enabler of knowledge-based economy and development. In 2014, EEE was 33,449 tonnes (t), which is expected to be 267,741 t in 2050, with a yearly increase rate of 5.95%. In this regard, out-of-date EEE is being dumped as e-waste in large quantities and at an increasing rate across Rwanda. E-waste is often disposed of in uncontrolled landfills together with other types of household waste. To address this rising threat, as well as to preserve the environment and human health, proper e-waste management involving e-waste sorting/separation from other waste streams, repairs, reuse, recycling, remanufacturing, and disposal has been proposed.


Asunto(s)
Residuos Electrónicos , Administración de Residuos , Humanos , Residuos Electrónicos/análisis , Rwanda , Administración de Residuos/métodos , Electrónica , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA