Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artif Life ; 21(2): 119-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25951199

RESUMEN

Soft robots offer many advantages over traditional rigid robots. However, soft robots can be difficult to control with standard control methods. Fortunately, evolutionary algorithms can offer an elegant solution to this problem. Instead of creating controls to handle the intricate dynamics of these robots, we can simply evolve the controls using a simulation to provide an evaluation function. In this article, we show how such a control paradigm can be applied to an emerging field within soft robotics: robots based on tensegrity structures. We take the model of the Spherical Underactuated Planetary Exploration Robot ball (SUPERball), an icosahedron tensegrity robot under production at NASA Ames Research Center, develop a rolling locomotion algorithm, and study the learned behavior using an accurate model of the SUPERball simulated in the NASA Tensegrity Robotics Toolkit. We first present the historical-average fitness-shaping algorithm for coevolutionary algorithms to speed up learning while favoring robustness over optimality. Second, we use a distributed control approach by coevolving open-loop control signals for each controller. Being simple and distributed, open-loop controllers can be readily implemented on SUPERball hardware without the need for sensor information or precise coordination. We analyze signals of different complexities and frequencies. Among the learned policies, we take one of the best and use it to analyze different aspects of the rolling gait, such as lengths, tensions, and energy consumption. We also discuss the correlation between the signals controlling different parts of the tensegrity robot.

2.
J R Soc Interface ; 11(98): 20140520, 2014 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24990292

RESUMEN

To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation.


Asunto(s)
Robótica , Algoritmos , Animales , Inteligencia Artificial , Fenómenos Biomecánicos , Biomimética , Simulación por Computador , Computadores , Humanos , Locomoción , Modelos Biológicos , Programas Informáticos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...