Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718148

RESUMEN

Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.


Asunto(s)
Microbiota , Microcistinas , Microcystis , Nitrógeno , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Microcistinas/metabolismo , Nitrógeno/metabolismo , Aminoácidos/metabolismo
2.
Anal Chem ; 96(2): 775-786, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38170221

RESUMEN

Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria, and their structural diversity has led to the discovery of more than 300 congeners to date. However, with known amino acid combinations, many more MC congeners are theoretically possible, suggesting many remain unidentified. Herein, two novel serine (Ser)-containing MCs were putatively identified in a Lake Erie cyanobacterial harmful algal bloom (cyanoHAB), using high-resolution UHPLC-MS as well as thiol and sulfoxide derivatization procedures. These MCs contain an α,ß-unsaturated carbonyl on methyl dehydroalanine (Mdha) residue that undergoes Michael addition to produce a thiol-derivatized MC. Derivatization reactions using various thiolation reagents were followed by MS/MS, and two Python codes were used for data analysis and structural elucidation of MCs. Two novel MCs containing Ser at position 1 (i.e., next to Mdha) were putatively identified as [Ser1]MC-RR and [Ser1]MC-YR. Using thiol- and sulfoxide-modified [Ser1]MCs, identifications were confirmed by the observation of specific neutral losses of the oxidized thiols or sulfoxides in CID-MS/MS spectra in both positive and negative electrospray ionization (ESI) modes. These novel neutral losses are unique for MCs with Mdha and an adjacent Ser residue. Data suggest that a gas-phase reaction occurs between oxygen from adjacent Ser residue and sulfur of the Mdha-bonded thiol or sulfoxide, which leads to the formation and detection of stable cyclic MC ions in MS/MS spectra at m/z values corresponding to the loss of oxidized thiols or oxidized sulfoxides from Ser1-containing MCs.


Asunto(s)
Cianobacterias , Safrol/análogos & derivados , Espectrometría de Masas en Tándem , Microcistinas/análisis , Cromatografía Líquida de Alta Presión , Serina , Cromatografía Liquida/métodos , Cianobacterias/química , Compuestos de Sulfhidrilo/química
3.
Harmful Algae ; 126: 102440, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37290887

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 µg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.


Asunto(s)
Cianobacterias , Microbiota , Microcystis , Humanos , Microcystis/genética , Lagos/microbiología , Cianobacterias/genética , Variación Genética
4.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36362352

RESUMEN

Endogenous cardiotonic steroids (CTSs), such as telocinobufagin (TCB) and marinobufagin (MBG) contain a lactone moiety critical to their binding and signaling through the Na+/K+-ATPase. Their concentrations elevate in response to sodium intake and under volume-expanded conditions. Paraoxonase 3 (PON3) is an enzyme that can hydrolyze lactone substrates. Here, we examine the role of PON3 in regulating CTS levels in a rat model of chronic kidney diseases (CKD). TCB and MBG were extracted from rat urine samples, and the analyses were carried out using ultra-high pressure liquid chromatography−Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS). Ten-week-old Dahl salt-sensitive wild type (SS-WT) and Dahl salt-sensitive PON3 knockout (SS-PON3 KO) rats were maintained on a high-salt diet (8% NaCl) for 8 weeks to initiate salt-sensitive hypertensive renal disease characteristic of this model. CTS extraction recovery from urine >80% was achieved. For animals maintained on a normal chow diet, the baseline amount of TCB excreted in 24 h urine of SS-PON3 KO rats (6.08 ± 1.47 ng/24 h; or 15.09 ± 3.25 pmol) was significantly higher than for SS-WT rats (1.48 ± 0.69 ng/24 h; or 3.67 ± 1.54 pmol, p < 0.05). Similarly, for the same animals, the amount of excreted MBG was higher in the urine of SS-PON3 KO rats (4.74 ± 1.30 ng/24 h versus 1.03 ± 0.25 ng/24 h in SS-WT; or 11.83 ± 2.91 pmol versus 2.57 ± 0.56 pmol in SS-WT, p < 0.05). For animals on a high-salt diet, the SS-PON3 KO rats had significantly increased levels of TCB (714.52 ± 79.46 ng/24 h; or 1774.85 ± 175.55 pmol) compared to SS-WT control (343.84 ± 157.54 ng/24 h; or 854.09 ± 350.02 pmol, p < 0.05), and comparatively higher levels of MBG were measured for SS-PON3 KO (225.55 ± 82.61 ng/24 h; or 563.19 ± 184.5 pmol) versus SS-WT (157.56 ± 85.53 ng/24 h; or 393.43 ± 191.01 pmol, p > 0.05) rats. These findings suggest that the presence and absence of PON3 dramatically affect the level of endogenous CTSs, indicating its potential role in CTS regulation.


Asunto(s)
Glicósidos Cardíacos , Hipertensión , Insuficiencia Renal Crónica , Ratas , Animales , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Ratas Endogámicas Dahl , Cromatografía Líquida de Alta Presión , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio/metabolismo , Lactonas , Hipertensión/metabolismo , Riñón/metabolismo , Presión Sanguínea
5.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009344

RESUMEN

We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.

6.
Antioxidants (Basel) ; 11(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35326240

RESUMEN

Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes' exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.

7.
Environ Sci Technol ; 56(3): 1652-1663, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018784

RESUMEN

Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified. Herein, a method is described for the putative identification of MCs using liquid chromatography (LC) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy. Maumee River water samples were collected during a harmful algal bloom and analyzed by LC-MS with simultaneous HRMS and MS/MS. Unidentified ions with characteristic MC fragments (135 and 213 m/z) were recognized as possible novel MC congeners. An innovative workflow was developed for the putative identification of these ions. Python code was written to generate the potential structures of unidentified MCs and to assign ions after the fragmentation for structural confirmation. The workflow enabled the putative identification of eight previously reported MCs for which standards are not available and two newly discovered congeners, MC-HarR and MC-E(OMe)R.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Agua Dulce , Floraciones de Algas Nocivas , Microcistinas/análisis
8.
Toxins (Basel) ; 13(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34679004

RESUMEN

Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. Herein, the distribution of hepatotoxic peptide microcystin-LR (MC-LR) is investigated in liver tissues of mice gavaged with this most common MC congener. Preliminary matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging experiments performed using a non-automated MALDI matrix deposition device and a MALDI-time-of-flight (TOF) mass spectrometer yielded ambiguous results in terms of MC-LR distribution in liver samples obtained from MC-LR-gavaged mice. The tissue preparation for MALDI-MS imaging was improved by using an automated sprayer for matrix deposition, and liver sections were imaged using an Nd:YAG MALDI laser coupled to a 15 Tesla Fourier-transform ion cyclotron resonance (FT-ICR)-mass spectrometer. MALDI-FT-ICR-MS imaging provided unambiguous detection of protonated MC-LR (calculated m/z 995.5560, z = +1) and the sodium adduct of MC-LR (m/z 1017.5380, z = +1) in liver sections from gavaged mice with great mass accuracy and ultra-high mass resolution. Since both covalently bound and free MC-LR can be found in liver of mice exposed to this toxin, the present results indicate that the distribution of free microcystins in tissue sections from affected organs, such as liver, can be monitored with high-resolution MALDI-MS imaging.


Asunto(s)
Hígado/química , Toxinas Marinas/metabolismo , Microcistinas/metabolismo , Animales , Hígado/metabolismo , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Plants (Basel) ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917687

RESUMEN

The response of plant N relations to the combination of elevated CO2 (eCO2) and warming are poorly understood. To study this, tomato (Solanum lycopersicum) plants were grown at 400 or 700 ppm CO2 and 33/28 or 38/33 °C (day/night), and their soil was labeled with 15NO3- or 15NH4+. Plant dry mass, root N-uptake rate, root-to-shoot net N translocation, whole-plant N assimilation, and root resource availability (%C, %N, total nonstructural carbohydrates) were measured. Relative to eCO2 or warming alone, eCO2 + warming decreased growth, NO3- and NH4+-uptake rates, root-to-shoot net N translocation, and whole-plant N assimilation. Decreased N assimilation with eCO2 + warming was driven mostly by inhibition of NO3- assimilation, and was not associated with root resource limitations or damage to N-assimilatory proteins. Previously, we showed in tomato that eCO2 + warming decreases the concentration of N-uptake and -assimilatory proteins in roots, and dramatically increases leaf angle, which decreases whole-plant light capture and, hence, photosynthesis and growth. Thus, decreases in N uptake and assimilation with eCO2 + warming in tomato are likely due to reduced plant N demand.

11.
Toxins (Basel) ; 12(4)2020 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325806

RESUMEN

A method was developed to extract and quantify microcystins (MCs) from mouse liver with limits of quantification (LOQs) lower than previously reported. MCs were extracted from 40-mg liver samples using 85:15 (v:v) CH3CN:H2O containing 200 mM ZnSO4 and 1% formic acid. Solid-phase extraction with a C18 cartridge was used for sample cleanup. MCs were detected and quantified using HPLC-orbitrap-MS with simultaneous MS/MS detection of the 135.08 m/z fragment from the conserved Adda amino acid for structural confirmation. The method was used to extract six MCs (MC-LR, MC-RR, MC-YR, MC-LA, MC-LF, and MC-LW) from spiked liver tissue and the MC-LR cysteine adduct (MC-LR-Cys) created by the glutathione detoxification pathway. Matrix-matched internal standard calibration curves were constructed for each MC (R2 ≥ 0.993), with LOQs between 0.25 ng per g of liver tissue (ng/g) and 0.75 ng/g for MC-LR, MC-RR, MC-YR, MC-LA, and MC-LR-Cys, and 2.5 ng/g for MC-LF and MC-LW. The protocol was applied to extract and quantify MC-LR and MC-LR-Cys from the liver of mice that had been gavaged with 50 µg or 100 µg of MC-LR per kg bodyweight and were euthanized 2 h, 4 h, or 48 h after final gavage. C57Bl/6J (wild type, control) and Leprdb/J (experiment) mice were used as a model to study non-alcoholic fatty liver disease. The Leprdb/J mice were relatively inefficient in metabolizing MC-LR into MC-LR-Cys, which is an important defense mechanism against MC-LR exposure. Trends were also observed as a function of MC-LR gavage amount and time between final MC-LR gavage and euthanasia/organ harvest.


Asunto(s)
Hígado/química , Microcistinas/análisis , Animales , Cromatografía Liquida , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcistinas/farmacocinética , Espectrometría de Masas en Tándem
12.
Toxins (Basel) ; 11(9)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450746

RESUMEN

Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 µg/kg, 100 µg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15-17 mice/group). Early mortality was observed in both the 50 µg/kg (1/17, 6%), and 100 µg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.


Asunto(s)
Hígado/efectos de los fármacos , Microcistinas/toxicidad , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Hígado/patología , Masculino , Toxinas Marinas , Ratones , Ratones Endogámicos , Microcistinas/sangre , Microcistinas/orina , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/genética , Proteómica , Análisis de Supervivencia , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/orina
13.
Sci Total Environ ; 666: 1292-1300, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30970494

RESUMEN

Microcystins (MCs) appear during harmful algal blooms (HABs) in water sources worldwide, and represent a threat for humans and animals ingesting or inhaling MCs from the environment. Herein, treated rice husk (RH) was tested as a recyclable sorbent for removal of six MCs (MC-RR, MC-LR, MC-YR, MC-LA, MC-LF, and MC-LW) from water. RH was refluxed with hydrochloric acid and heated to 250 °C to produce the sorbent material. Twenty milligrams of treated RH removed >95% of the MCs from a 30 mL solution containing 25 µg/L of each MC. The adsorption of MCs onto RH follows the Freundlich isotherm model (R2 ≥ 0.9612) and pseudo-second-order kinetics (R2 ≥ 0.9996). More than 90% of MCs were removed within 5 min, and >95% were removed at equilibrium (in <40 min). Performance of the RH sorbent was evaluated by removing MCs from Lake Erie water collected during an algal bloom in 2017. The total concentration (extracellular plus intracellular) of six tested MCs in lake water ranged from 3.7 to 13,605.9 µg/L, and removal of MCs by treated RH ranged from 100.0% to 71.8%, respectively. The removal capacity of RH for the six MCs from the lake water sample containing 13,605.9 µg/L of MCs was 586 µg per g of treated RH. After being used to extract MCs, the RH was heated to 560 °C to produce silica nanoparticles. Therefore, treated RH enables rapid and efficient removal of MCs from water and it can be recycled for use as a raw material. Overall, treated RH can contribute to mitigation of environmental and health effects caused by MCs and reduce concerns for toxic waste disposal.


Asunto(s)
Agua Potable/análisis , Lagos/análisis , Microcistinas/análisis , Oryza/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Agua Potable/microbiología , Floraciones de Algas Nocivas , Lagos/microbiología , Purificación del Agua/instrumentación
14.
J Chromatogr A ; 1573: 66-77, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30201162

RESUMEN

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 µg/L and 10 µg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 µg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 µg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 µg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 µg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 µg of MC-LR per kg bodyweight contained on average 1.30 µg/L of MC-LR (n = 8), while mice administered 100 µg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 µg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cromatografía Líquida de Alta Presión , Microcistinas/sangre , Microcistinas/orina , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Urinálisis/métodos , Animales , Humanos , Ratones
15.
J Chromatogr A ; 1560: 1-9, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-29801941

RESUMEN

A novel sorbent material, gold-polypyrrole (Au-PPy) nanocomposite-coated silica, is described for the efficient solid-phase extraction (SPE) of six common microcystins (MCs) well below the recommended United States EPA and World Health Organization (WHO) guidelines. With the optimized SPE protocol, samples spiked with MCs were determined at ng/L concentrations by liquid chromatography-mass spectrometry (LC-MS) in different aqueous sample matrices, including HPLC-grade, tap, and lake water. The average recoveries for all MCs tested in the three water matrices ranged from 94.1-103.2% with relative standard deviations (RSDs) of 1.6-5.4%, which indicated excellent extraction efficiency and reproducibility. Limits of detection (LODs) and limits of quantification (LOQs) for all MCs in both tap and lake water samples were determined to be ≤1.5 ng/L and 5.0 ng/L, respectively. The Au-PPy nanocomposite-coated sorbent material was reusable for at least three independent MC extractions with a single SPE cartridge in the concentration range of 10-500 ng/L. Importantly, off-column selective separation at the sample preparation and preconcentration stage between more hydrophilic and more hydrophobic MCs was achieved by sequential elution through changes in the solvent composition and SPE bed size. Therefore, the Au-PPy nanocomposite-coated silica sorbent is a promising new material for the quantification of MC variants in water samples.


Asunto(s)
Oro/química , Microcistinas/análisis , Microcistinas/aislamiento & purificación , Nanocompuestos/química , Polímeros/química , Pirroles/química , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Límite de Detección , Espectrometría de Masas en Tándem/métodos , Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
16.
Biomarkers ; 22(3-4): 372-382, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28055279

RESUMEN

CONTEXT: Quantitative changes of salivary proteins due to acute stress were detected. OBJECTIVE: To explore protein markers of stress in saliva of eight medical residents who performed emergency medicine simulations. MATERIALS AND METHODS: Saliva was collected before the simulations, after the simulations, and following morning upon waking. Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), identified by mass spectrometry (MS), and relatively quantified by densitometry. RESULTS: Salivary alpha-amylase and S-type cystatins significantly increased, while the ∼26 kDa and low-molecular weight (MW) (<10 kDa) SDS-PAGE bands exhibited changes after stress. DISCUSSION AND CONCLUSION: Alpha-amylase and cystatins are potential salivary markers of acute stress, but further validation should be performed using larger sample populations.


Asunto(s)
Proteómica/métodos , Proteínas y Péptidos Salivales/metabolismo , Estrés Psicológico/metabolismo , Adulto , Electroforesis en Gel de Poliacrilamida , Servicios Médicos de Urgencia/métodos , Femenino , Humanos , Internado y Residencia , Masculino , Espectrometría de Masas , Proyectos Piloto , Cistatinas Salivales/análisis , Proteínas y Péptidos Salivales/análisis , Adulto Joven , alfa-Amilasas/análisis
17.
Carbohydr Res ; 431: 6-14, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27267063

RESUMEN

Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line.


Asunto(s)
Células Epiteliales/química , Glicoesfingolípidos/aislamiento & purificación , Neoplasias Glandulares y Epiteliales/química , Neoplasias Ováricas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Carcinoma Epitelial de Ovario , Línea Celular , Femenino , Glicoesfingolípidos/química , Humanos , Estructura Molecular
18.
ACS Chem Biol ; 9(10): 2393-403, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25126694

RESUMEN

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 µM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 µM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.


Asunto(s)
Antivirales/farmacología , Azoles/farmacología , Hepatitis C/virología , Ácidos Nucleicos/metabolismo , Compuestos de Organoselenio/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Antioxidantes/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proliferación Celular , Ensayo de Cambio de Movilidad Electroforética , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Hepatitis C/metabolismo , Humanos , Hidrólisis , Isoindoles , Cinética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Modelos Moleculares , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
Nat Commun ; 4: 2748, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24193546

RESUMEN

The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen (EBS) as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that EBS binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of EBS shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antígenos Bacterianos/metabolismo , Azoles/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Compuestos de Organoselenio/farmacología , Antiinflamatorios no Esteroideos/química , Antígenos Bacterianos/genética , Azoles/química , Isoindoles , Proteínas de la Membrana , Modelos Moleculares , Estructura Molecular , Mutación , Mycobacterium tuberculosis/genética , Compuestos de Organoselenio/química , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae
20.
Xenotransplantation ; 20(5): 277-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24033743

RESUMEN

BACKGROUND: The temporary or long-term xenotransplantation of pig organs into people would save thousands of lives each year if not for the robust human antibody response to pig carbohydrates. Genetically engineered pigs deficient in galactose α1,3 galactose (gene modified: GGTA1) and N-glycolylneuraminic acid (gene modified: CMAH) have significantly improved cell survival when challenged by human antibody and complement in vitro. There remains, however, a significant portion of human antibody binding. METHODS: To uncover additional xenoantigens, we compared the asparagine-linked (N-linked) glycome from serum proteins of humans, domestic pigs, GGTA1 knockout pigs, and GGTA1/CMAH knockout pigs using mass spectrometry. Carbohydrate structures were determined with assistance from GlycoWorkbench, Cartoonist, and SimGlycan software by comparison to existing database entries and collision-induced dissociation fragmentation data. RESULTS: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of reduced and solid-phase permethylated glycans resulted in the detection of high-mannose, hybrid, and complex type N-linked glycans in the 1000-4500 m/z ion range. GGTA1/CMAH knockout pig samples had increased relative amounts of high-mannose, incomplete, and xylosylated N-linked glycans. All pig samples had significantly higher amounts of core and possibly antennae fucosylation. CONCLUSIONS: We provide for the first time a comparison of the serum protein glycomes of the human, domestic pig, and genetically modified pigs important to xenotransplantation.


Asunto(s)
Antígenos Heterófilos/inmunología , Secuencia de Carbohidratos/genética , Ácido N-Acetilneuramínico Citidina Monofosfato/inmunología , Galactosiltransferasas/genética , Polisacáridos/química , Animales , Antígenos Heterófilos/genética , Secuencia de Carbohidratos/fisiología , Carbohidratos/química , Carbohidratos/inmunología , Galactosa/inmunología , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sus scrofa/inmunología , Porcinos , Trasplante Heterólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...