Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virologie (Montrouge) ; 28(1): 23-35, 2024 02 01.
Artículo en Francés | MEDLINE | ID: mdl-38450665

RESUMEN

In the spring of 2022, an epidemic due to human monkeypox virus (MPXV) of unprecedented magnitude spread across all continents. Although this event was surprising in its suddenness, the resurgence of a virus from the Poxviridae family is not surprising in a world population that has been largely naïve to these viruses since the eradication of the smallpox virus in 1980 and the concomitant cessation of vaccination. Since then, a vaccine and two antiviral compounds have been developed to combat a possible return of smallpox. However, the use of these treatments during the 2022 MPXV epidemic showed certain limitations, indicating the importance of continuing to develop the therapeutic arsenal against these viruses. For several decades, efforts to understand the molecular mechanisms involved in the synthesis of the DNA genome of these viruses have been ongoing. Although many questions remain unanswered up to now, the three-dimensional structures of essential proteins, and in particular of the DNA polymerase holoenzyme in complex with DNA, make it possible to consider the development of a model for poxvirus DNA replication. In addition, these structures are valuable tools for the development of new antivirals targeting viral genome synthesis. This review will first present the molecules approved for the treatment of poxvirus infections, followed by a review of our knowledge of the replication machinery of these viruses. Finally, we will describe how these proteins could be the target of new antiviral compounds.


Asunto(s)
Mpox , Poxviridae , Virus de la Viruela , Humanos , Poxviridae/genética , Virus de la Viruela/genética , ADN , Replicación del ADN , Antivirales/farmacología , Antivirales/uso terapéutico
2.
J Infect Dis ; 228(10): 1421-1429, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37224627

RESUMEN

BACKGROUND: On May 6, 2022, a powerful outbreak of monkeypox virus (MPXV) had been reported outside of Africa, with many continuing new cases being reported around the world. Analysis of mutations among the 2 different lineages present in the 2021 and 2022 outbreaks revealed the presence of G->A mutations occurring in the 5'GpA context, indicative of APOBEC3 cytidine deaminase activity. METHODS: By using a sensitive polymerase chain reaction (differential DNA denaturation PCR) method allowing differential amplification of AT-rich DNA, we analyzed the level of APOBEC3-induced MPXV editing in infected cells and in patients. RESULTS: We demonstrate that G->A hypermutated MPXV genomes can be recovered experimentally from APOBEC3 transfection followed by MPXV infection. Here, among the 7 human APOBEC3 cytidine deaminases (A3A-A3C, A3DE, A3F-A3H), only APOBEC3F was capable of extensively deaminating cytidine residues in MPXV genomes. Hyperedited genomes were also recovered in ∼42% of analyzed patients. Moreover, we demonstrate that substantial repair of these mutations occurs. Upon selection, corrected G->A mutations escaping drift loss contribute to the MPXV evolution observed in the current epidemic. CONCLUSIONS: Stochastic or transient overexpression of the APOBEC3F gene exposes the MPXV genome to a broad spectrum of mutations that may be modeling the mutational landscape after multiple cycles of viral replication.


Asunto(s)
Citidina Desaminasa , Monkeypox virus , Humanos , Monkeypox virus/genética , Citidina Desaminasa/genética , Mutación , Brotes de Enfermedades , Citidina , Citosina Desaminasa/química , Citosina Desaminasa/genética
4.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344621

RESUMEN

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Asunto(s)
Monkeypox virus , Mpox , Estados Unidos , Humanos , Mpox/tratamiento farmacológico , Isoindoles/farmacología , Isoindoles/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico
5.
Viruses ; 14(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35891539

RESUMEN

The vaccinia virus (VACV) was previously used as a vaccine for smallpox eradication. Nowadays, recombinant VACVs are developed as vaccine platforms for infectious disease prevention and cancer treatment. The conventional method for genome editing of the VACV is based on homologous recombination, which is poorly efficient. Recently, the use of CRISPR/Cas9 technology was shown to greatly improve the speed and efficiency of the production of recombinant VACV expressing a heterologous gene. However, the ability to rapidly recover viruses bearing single nucleotide substitutions is still challenging. Notwithstanding, ongoing studies on the VACV and its interaction with the host cell could benefit from viral gene targeted mutagenesis. Here, we present a modified version of the CRISPR/Cas9 system for the rapid selection of mutant VACV carrying point mutations. For this purpose, we introduced a silent mutation into the donor gene (which will replace the wildtype gene) that serves a double function: it is located in the PAM (NGG) sequence, which is essential for Cas9 cleavage, and it alters a restriction site. This silent mutation, once introduced into the VACV genome, allows for rapid selection and screening of mutant viruses carrying a mutation of interest in the targeted gene. As a proof of concept, we produced several recombinant VACVs, with mutations in the E9L gene, upon which, phenotypic analysis was performed.


Asunto(s)
Sistemas CRISPR-Cas , Virus Vaccinia , Secuencia de Bases , Edición Génica/métodos , Mutación Puntual , Virus Vaccinia/genética
6.
Viruses ; 14(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215961

RESUMEN

A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer-template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min-1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3'-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.


Asunto(s)
ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Virus Vaccinia/enzimología , Proteínas Virales/metabolismo , Virus de la Mieloblastosis Aviar/genética , Virus de la Mieloblastosis Aviar/metabolismo , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/genética , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Virus de la Leucemia Murina de Moloney/genética , Virus de la Leucemia Murina de Moloney/metabolismo , Unión Proteica , Técnica SELEX de Producción de Aptámeros , Virus Vaccinia/genética , Proteínas Virales/genética , Replicación Viral
7.
J Mol Biol ; 433(13): 167009, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33901538

RESUMEN

Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Dominios Proteicos , Virus Vaccinia/enzimología , Proteínas Virales/química , Secuencia de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Soluciones/química , Virus Vaccinia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
8.
Med Sci (Paris) ; 36(8-9): 797-802, 2020.
Artículo en Francés | MEDLINE | ID: mdl-32755538

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2, which emerged in China at the end of 2019, is responsible for a global health crisis resulting in the confinement of more than 3 billion people worldwide and the sharp decline of the world economy. In this context, a race against the clock is launched in order to develop a treatment to stop the pandemic as soon as possible. A study published in Nature by the Volker Thiel team reports the development of reverse genetics for SARS-CoV-2 allowing them to recreate the virus in just a few weeks. The perspectives of this work are very interesting since it will allow the genetic manipulation of the virus and thus the development of precious tools which will be useful to fight the infection. Even though this approach represents a technological leap that will improve our knowledge of the virus, it also carries the germ of possible misuse and the creation of the virus for malicious purposes. The advantages and disadvantages of recreating SARS-CoV-2 in this pandemic period are discussed in this mini-synthesis.


TITLE: Une course contre la montre - Création du SARS-CoV-2 en laboratoire, un mois après son émergence ! ABSTRACT: Le SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2), qui a émergé à la fin de l'année 2019 en République populaire de Chine, est responsable d'une crise sanitaire mondiale qui a entraîné le confinement de plus de 3 milliards d'individus et l'arrêt brutal de l'économie planétaire. Dans ce contexte, une course contre la montre est lancée afin de développer, dans les plus brefs délais, un traitement permettant d'enrayer la pandémie. Une étude de l'équipe de Volker Thiel, parue dans le journal Nature, rapporte la mise au point d'une technique de génétique inverse pour le SARS-CoV-2, leur ayant permis de recréer le virus en seulement quelques semaines. Les perspectives de ces travaux sont très intéressantes puisqu'elles permettent d'envisager la manipulation génétique du virus et ainsi le développement d'outils précieux qui seront utiles pour combattre l'infection. Si la technique représente également un saut technologique qui permettra d'améliorer nos connaissances sur le virus, elle porte aussi en elle le germe d'un possible mésusage et la création d'un virus à des fins malveillantes. Les avantages et inconvénients de recréer le SARS-CoV-2 dans cette période de pandémie sont discutés dans cet article.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Organismos Modificados Genéticamente , Pandemias , Neumonía Viral/virología , Genética Inversa/métodos , Betacoronavirus/patogenicidad , Derrame de Material Biológico , COVID-19 , Vacunas contra la COVID-19 , Cromosomas Artificiales de Levadura , Clonación Molecular/métodos , Coronaviridae/clasificación , Coronaviridae/genética , Coronaviridae/patogenicidad , Infecciones por Coronavirus/prevención & control , ADN Complementario/genética , Especificidad del Huésped , Humanos , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/patogenicidad , Pandemias/prevención & control , Neumonía Viral/prevención & control , ARN Viral/genética , Recombinación Genética , Riesgo , SARS-CoV-2 , Vacunas Virales
9.
Artículo en Inglés | MEDLINE | ID: mdl-31932370

RESUMEN

Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas/métodos , Viruela/tratamiento farmacológico , Virus de la Viruela/efectos de los fármacos , Animales , Benzamidas/farmacología , Armas Biológicas , Investigación Biomédica/legislación & jurisprudencia , Citosina/análogos & derivados , Citosina/farmacología , Modelos Animales de Enfermedad , Isoindoles/farmacología , Organofosfonatos/farmacología , Viruela/virología
10.
Nat Commun ; 10(1): 1181, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862836

RESUMEN

Attachment of human adenovirus (HAd) to the host cell is a critical step of infection. Initial attachment occurs via the adenoviral fibre knob protein and a cellular receptor. Here we report the cryo-electron microscopy (cryo-EM) structure of a <100 kDa non-symmetrical complex comprising the trimeric HAd type 3 fibre knob (HAd3K) and human desmoglein 2 (DSG2). The structure reveals a unique stoichiometry of 1:1 and 2:1 (DSG2: knob trimer) not previously observed for other HAd-receptor complexes. We demonstrate that mutating Asp261 in the fibre knob is sufficient to totally abolish receptor binding. These data shed new light on adenovirus infection strategies and provide insights for adenoviral vector development and structure-based design.


Asunto(s)
Adenovirus Humanos/metabolismo , Proteínas de la Cápside/metabolismo , Desmogleína 2/metabolismo , Receptores Virales/metabolismo , Acoplamiento Viral , Infecciones por Adenoviridae/patología , Infecciones por Adenoviridae/virología , Adenovirus Humanos/patogenicidad , Asparagina/genética , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Desmogleína 2/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Dominios Proteicos , Receptores Virales/ultraestructura , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
11.
Sci Rep ; 8(1): 8381, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849084

RESUMEN

High-affinity binding of the trimeric fibre protein to a cell surface primary receptor is a common feature shared by all adenovirus serotypes. Recently, a long elusive species B adenovirus receptor has been identified. Desmoglein 2 (DSG2) a component of desmosomal junction, has been reported to interact at high affinity with Human adenoviruses HAd3, HAd7, HAd11 and HAd14. Little is known with respect to the molecular interactions of adenovirus fibre with the DSG2 ectodomain. By using different DSG2 ectodomain constructs and biochemical and biophysical experiments, we report that the third extracellular cadherin domain (EC3) of DSG2 is critical for HAd3 fibre binding. Unexpectedly, stoichiometry studies using multi-angle laser light scattering (MALLS) and analytical ultra-centrifugation (AUC) revealed a non-classical 1:1 interaction (one DSG2 per trimeric fibre), thus differentiating 'DSG2-interacting' adenoviruses from other protein receptor interacting adenoviruses in their infection strategy.


Asunto(s)
Adenoviridae/metabolismo , Desmogleína 2/metabolismo , Serogrupo , Adenoviridae/genética , Desmogleína 2/química , Glicosilación , Humanos , Unión Proteica , Dominios Proteicos
12.
Nat Commun ; 8(1): 1455, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129932

RESUMEN

Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta-DNA complex.


Asunto(s)
Dominio Catalítico/genética , ADN Polimerasa Dirigida por ADN/ultraestructura , Virus Vaccinia/enzimología , Cristalografía por Rayos X , ADN Glicosilasas/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Nucleósido-Trifosfatasa/genética
13.
Viruses ; 10(1)2017 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-29295488

RESUMEN

Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.


Asunto(s)
Control de Enfermedades Transmisibles/tendencias , Orthopoxvirus/fisiología , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/virología , Investigación/tendencias , Animales , Antivirales/síntesis química , Antivirales/farmacología , Antivirales/provisión & distribución , Francia , Humanos , Orthopoxvirus/clasificación , Orthopoxvirus/efectos de los fármacos , Orthopoxvirus/genética , Poxviridae/clasificación , Poxviridae/genética , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/patología , Vacuna contra Viruela/administración & dosificación , Vacuna contra Viruela/biosíntesis , Vacuna contra Viruela/provisión & distribución , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos
14.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 687-91, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599859

RESUMEN

The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Mutación Puntual , Uracil-ADN Glicosidasa/química , Virus Vaccinia/química , Proteínas Virales/química , Secuencias de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalización , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Expresión Génica , Modelos Moleculares , Plásmidos/química , Plásmidos/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Difracción de Rayos X
15.
J Virol ; 90(9): 4604-4613, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912611

RESUMEN

UNLABELLED: Poxviridae are viruses with a large linear double-stranded DNA genome coding for up to 250 open reading frames and a fully cytoplasmic replication. The double-stranded DNA genome is covalently circularized at both ends. Similar structures of covalently linked extremities of the linear DNA genome are found in the African swine fever virus (asfarvirus) and in the Phycodnaviridae We are studying the machinery which replicates this peculiar genome structure. From our work with vaccinia virus, we give first insights into the overall structure and function of the essential poxvirus virus helicase-primase D5 and show that the active helicase domain of D5 builds a hexameric ring structure. This hexamer has ATPase and, more generally, nucleoside triphosphatase activities that are indistinguishable from the activities of full-length D5 and that are independent of the nature of the base. In addition, hexameric helicase domains bind tightly to single- and double-stranded DNA. Still, the monomeric D5 helicase construct truncated within the D5N domain leads to a well-defined structure, but it does not have ATPase or DNA-binding activity. This shows that the full D5N domain has to be present for hexamerization. This allowed us to assign a function to the D5N domain which is present not only in D5 but also in other viruses of the nucleocytoplasmic large DNA virus (NCLDV) clade. The primase domain and the helicase domain were structurally analyzed via a combination of small-angle X-ray scattering and, when appropriate, electron microscopy, leading to consistent low-resolution models of the different proteins. IMPORTANCE: Since the beginning of the 1980s, research on the vaccinia virus replication mechanism has basically stalled due to the absence of structural information. As a result, this important class of pathogens is less well understood than most other viruses. This lack of information concerns in general viruses of the NCLDV clade, which use a superfamily 3 helicase for replication, as do poxviruses. Here we provide for the first time information about the domain structure and DNA-binding activity of D5, the poxvirus helicase-primase. This result not only refines the current model of the poxvirus replication fork but also will lead in the long run to a structural basis for antiviral drug design.


Asunto(s)
ADN Helicasas/química , ADN Primasa/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Virus Vaccinia , Proteínas Virales/química , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN Primasa/metabolismo , ADN Viral/metabolismo , Activación Enzimática , Cinética , Microscopía Electrónica , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión , Proteínas Virales/metabolismo
16.
Virologie (Montrouge) ; 20(4): 218-230, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260034

RESUMEN

Parapoxviruses, double-stranded DNA viruses of the Poxviridæ family, are etiologic agents of cutaneaous infectious diseases among farm animals. These highly contagious viruses are responsible for wide outbreaks among livestock. The clinical manifestations are generally mild and consist of cutaneous or mucosal lesions, which resolve spontaneously within a few weeks. However, secondary bacterial or fungal infections on the lesion sites can aggravate the symptoms. Sore lesions located within the oral cavity and on the udders can impair feeding or nursing, thus leading to death. Livestock parapoxviruses can infect humans by direct or indirect transmission and affect mainly farmers, slaughters and veterinarians. Human symptoms generally consist of small cutaneous lesions located at the inoculation points but more severe forms can occur, peculiarly in immunocompromised persons. The parapoxvirus epidemiology is poorly understood: their respective host range and ecology among wild animals are to be clarified. The identification of parapoxviruses among marine mammals suggests that the genetic diversity within the genus is still underestimated.

17.
J Biol Chem ; 290(29): 17923-17934, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26045555

RESUMEN

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 µm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.


Asunto(s)
ADN/metabolismo , Uracil-ADN Glicosidasa/química , Virus Vaccinia/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , Humanos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Alineación de Secuencia , Uracil-ADN Glicosidasa/metabolismo , Vaccinia/virología , Virus Vaccinia/química , Virus Vaccinia/metabolismo
18.
PLoS Pathog ; 10(3): e1003978, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603707

RESUMEN

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201₋50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201₋50 clearly behaves as a heterodimer. The crystal structure of D4/A201₋50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201₋50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201₋50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201₋50 interaction. Finally, we propose a model of D4/A201₋50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Virus Vaccinia/química , Virus Vaccinia/enzimología , Animales , Cromatografía en Gel , Cristalografía , ADN Polimerasa Dirigida por ADN/ultraestructura , Escherichia coli , Holoenzimas/química , Holoenzimas/ultraestructura , Simulación del Acoplamiento Molecular , Subunidades de Proteína/química , Virus Vaccinia/ultraestructura
19.
J Virol ; 87(3): 1679-89, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23175373

RESUMEN

Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages.


Asunto(s)
Replicación del ADN , Sustancias Macromoleculares/ultraestructura , Virus Vaccinia/fisiología , Virus Vaccinia/ultraestructura , Replicación Viral , Microscopía Electrónica , Mapeo de Interacción de Proteínas , Dispersión del Ángulo Pequeño , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
20.
J Virol Methods ; 186(1-2): 176-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22981457

RESUMEN

Quantitation of intracellular viral genomes is critical in both clinical and fundamental virology. Quantitative real time PCR (qPCR) is currently the gold standard to detect and monitor virus infections, due to its high sensitivity and reproducibility. The reliability of qPCR data depends primarily on the technical process. Normalization, which corrects inter-sample variations related to both pre-analytical and qPCR steps, is a key point of an accurate quantitation. Total DNA input and qPCR-measured standards were evaluated to normalize intracellular Vaccinia virus (VACV) genomes. Three qPCR assays targeting either a single-copy chromosomic gene, a repeated chromosomic DNA sequence, or a mitochondrial DNA sequence were compared. qPCR-measured standards, unlike total DNA input, allowed for accurate normalization of VACV genome, regardless of the cell number. Among PCR-measured standards, chromosomic DNA and mitochondrial DNA were equivalent to normalize VACV DNA and multi-copy standards displayed lower limits of quantitation than single-copy standards. The combination of two qPCR-measured standards slightly improved the reliability of the normalization. Using one or two multi-copy standards must be favored for relative quantitation of intracellular VACV DNA. This concept could be applied to other DNA viruses.


Asunto(s)
ADN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos , Animales , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Virus Vaccinia/aislamiento & purificación , Carga Viral/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...