Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8010): 154-164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649488

RESUMEN

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Asunto(s)
Envejecimiento , Músculo Esquelético , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Fragilidad/genética , Fragilidad/patología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/patología , Transcriptoma
3.
Cell Stem Cell ; 29(9): 1298-1314.e10, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998641

RESUMEN

Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.


Asunto(s)
Dinámicas Mitocondriales , Mitofagia , Anciano , Humanos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Células Madre/metabolismo
4.
Elife ; 112022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245177

RESUMEN

Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.


Asunto(s)
Células Satélite del Músculo Esquelético , Células Madre , Envejecimiento , Animales , Diferenciación Celular , Encapsulación Celular , Ratones , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Transcriptoma
5.
Ageing Res Rev ; 73: 101528, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818593

RESUMEN

Adult stem cells sustain tissue homeostasis and regeneration; their functional decline is often linked to aging, which is characterized by the progressive loss of physiological functions across multiple tissues and organs. The resident stem cells in skeletal muscle, termed satellite cells, are normally quiescent but activate upon injury to reconstitute the damaged tissue. In this review, we discuss the current understanding of the molecular processes that contribute to the functional failure of satellite cells during aging. This failure is due not only to intrinsic changes but also to extrinsic factors, most of which are still undefined but originate from the muscle tissue microenvironment of the satellite cells (the niche), or from the systemic environment. We also highlight the emerging applications of the powerful single-cell sequencing technologies in the study of skeletal muscle aging, particularly in the heterogeneity of the satellite cell population and the molecular interaction of satellite cells and other cell types in the niche. An improved understanding of how satellite cells communicate with their environment, and how this communication is perturbed with aging, will be helpful for defining countermeasures against loss of muscle regenerative capacity in sarcopenia.


Asunto(s)
Células Satélite del Músculo Esquelético , Envejecimiento , Senescencia Celular , Comunicación , Humanos , Músculo Esquelético , Regeneración , Células Madre
6.
Nat Commun ; 12(1): 5043, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413292

RESUMEN

Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5'-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5' UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5' UTR of target mRNAs.


Asunto(s)
Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Músculos/citología , Regeneración/fisiología , Células Madre/citología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Modelos Animales de Enfermedad , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Músculos/metabolismo , Mioblastos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Células Madre/metabolismo
7.
Circ Res ; 127(11): e252-e270, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32921258

RESUMEN

RATIONALE: The molecular mechanisms underlying the formation of coronary arteries during development and during cardiac neovascularization after injury are poorly understood. However, a detailed description of the relevant signaling pathways and functional TFs (transcription factors) regulating these processes is still incomplete. OBJECTIVE: The goal of this study is to identify novel cardiac transcriptional mechanisms of coronary angiogenesis and vessel remodeling by defining the molecular signatures of coronary vascular endothelial cells during these complex processes. METHODS AND RESULTS: We demonstrate that Nes-gfp and Nes-CreERT2 transgenic mouse lines are novel tools for studying the emergence of coronary endothelium and targeting sprouting coronary vessels (but not ventricular endocardium) during development. Furthermore, we identify Sox17 as a critical TF upregulated during the sprouting and remodeling of coronary vessels, visualized by a specific neural enhancer from the Nestin gene that is strongly induced in developing arterioles. Functionally, genetic-inducible endothelial deletion of Sox17 causes deficient cardiac remodeling of coronary vessels, resulting in improper coronary artery formation. CONCLUSIONS: We demonstrated that Sox17 TF regulates the transcriptional activation of Nestin's enhancer in developing coronary vessels while its genetic deletion leads to inadequate coronary artery formation. These findings identify Sox17 as a critical regulator for the remodeling of coronary vessels in the developing heart.


Asunto(s)
Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Neovascularización Fisiológica , Nestina/metabolismo , Factores de Transcripción SOXF/metabolismo , Remodelación Vascular , Animales , Linaje de la Célula , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Vasos Coronarios/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Nestina/genética , Factores de Transcripción SOXF/genética , Transcripción Genética , Activación Transcripcional , Transcriptoma
8.
Front Cell Dev Biol ; 8: 620409, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33553156

RESUMEN

The skeletal muscle tissue in the adult is relatively stable under normal conditions but retains a striking ability to regenerate by its resident stem cells (satellite cells). Satellite cells exist in a quiescent (G0) state; however, in response to an injury, they reenter the cell cycle and start proliferating to provide sufficient progeny to form new myofibers or undergo self-renewal and returning to quiescence. Maintenance of satellite cell quiescence and entry of satellite cells into the activation state requires autophagy, a fundamental degradative and recycling process that preserves cellular proteostasis. With aging, satellite cell regenerative capacity declines, correlating with loss of autophagy. Enhancing autophagy in aged satellite cells restores their regenerative functions, underscoring this proteostatic activity's relevance for tissue regeneration. Here we describe two strategies for assessing autophagic activity in satellite cells from GFP-LC3 reporter mice, which allows direct autophagosome labeling, or from non-transgenic (wild-type) mice, where autophagosomes can be immunostained. Treatment of GFP-LC3 or WT satellite cells with compounds that interfere with autophagosome-lysosome fusion enables measurement of autophagic activity by flow cytometry and immunofluorescence. Thus, the methods presented permit a relatively rapid assessment of autophagy in stem cells from skeletal muscle in homeostasis and in different pathological scenarios such as regeneration, aging or disease.

9.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30814124

RESUMEN

Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Hematopoyesis , Proteína Homeótica Nanog/fisiología , Células Madre Pluripotentes/citología , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
10.
Blood ; 133(3): 224-236, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30361261

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via ß3-adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.


Asunto(s)
Movimiento Celular , Colinérgicos/farmacología , Ritmo Circadiano , Células Madre Hematopoyéticas/fisiología , Leucocitos/fisiología , Sistema Nervioso Parasimpático/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Adhesión Celular , Células Cultivadas , Quimiotaxis , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Leucocitos/citología , Leucocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 3/fisiología , Receptores Acoplados a Proteínas G/fisiología
11.
Nat Commun ; 6: 8548, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26456157

RESUMEN

Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These 'dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality.


Asunto(s)
Replicación del ADN , Eritropoyesis , Células Madre Hematopoyéticas/fisiología , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Susceptibilidad a Enfermedades , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Femenino , Genes Letales , Neoplasias Hematológicas , Hígado/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Proteínas Quinasas/metabolismo
12.
Stem Cell Reports ; 3(6): 965-74, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25454633

RESUMEN

Human bone marrow (BM) contains a rare population of nonhematopoietic mesenchymal stromal cells (MSCs), which are of central importance for the hematopoietic microenvironment. However, the precise phenotypic definition of these cells in adult BM has not yet been reported. In this study, we show that low/negative expression of CD140a (PDGFR-α) on lin(-)/CD45(-)/CD271(+) BM cells identified a cell population with very high MSC activity, measured as fibroblastic colony-forming unit frequency and typical in vitro and in vivo stroma formation and differentiation capacities. Furthermore, these cells exhibited high levels of genes associated with mesenchymal lineages and HSC supportive function. Moreover, lin(-)/CD45(-)/CD271(+)/CD140a(low/-) cells effectively mediated the ex vivo expansion of transplantable CD34(+) hematopoietic stem cells. Taken together, these data indicate that CD140a is a key negative selection marker for adult human BM-MSCs, which enables to prospectively isolate a close to pure population of candidate human adult stroma stem/progenitor cells with potent hematopoiesis-supporting capacity.


Asunto(s)
Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Antígenos CD/metabolismo , Biomarcadores , Análisis por Conglomerados , Ensayo de Unidades Formadoras de Colonias , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Transcriptoma
13.
Cell Stem Cell ; 15(6): 791-804, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25479752

RESUMEN

Estrogens are potent regulators of mature hematopoietic cells; however, their effects on primitive and malignant hematopoietic cells remain unclear. Using genetic and pharmacological approaches, we observed differential expression and function of estrogen receptors (ERs) in hematopoietic stem cell (HSC) and progenitor subsets. ERα activation with the selective ER modulator (SERM) tamoxifen induced apoptosis in short-term HSCs and multipotent progenitors. In contrast, tamoxifen induced proliferation of quiescent long-term HSCs, altered the expression of self-renewal genes, and compromised hematopoietic reconstitution after myelotoxic stress, which was reversible. In mice, tamoxifen treatment blocked development of JAK2(V617F)-induced myeloproliferative neoplasm in vivo, induced apoptosis of human JAK2(V617F+) HSPCs in a xenograft model, and sensitized MLL-AF9(+) leukemias to chemotherapy. Apoptosis was selectively observed in mutant cells, and tamoxifen treatment only had a minor impact on steady-state hematopoiesis in disease-free animals. Together, these results uncover specific regulation of hematopoietic progenitors by estrogens and potential antileukemic properties of SERMs.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Janus Quinasa 2/metabolismo , Leucemia/metabolismo , Células Progenitoras Mieloides/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Tamoxifeno/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Receptor alfa de Estrógeno/genética , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Humanos , Janus Quinasa 2/genética , Leucemia/tratamiento farmacológico , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Células Progenitoras Mieloides/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Elife ; 3: e03696, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25255216

RESUMEN

Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin(-) MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin(+) cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP(+) Pdgfrα(-) cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Cresta Neural/citología , Nicho de Células Madre , Animales , Células de la Médula Ósea/citología , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Quimiocina CXCL12/biosíntesis , Condrogénesis , Feto/citología , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Nestina/metabolismo , Análisis de Componente Principal , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo
15.
Blood ; 124(16): 2523-32, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25139355

RESUMEN

The first blood and endothelial cells of amniote embryos appear in close association in the blood islands of the yolk sac (YS). This association and in vitro lineage analyses have suggested a common origin from mesodermal precursors called hemangioblasts, specified in the primitive streak during gastrulation. Fate mapping and chimera studies, however, failed to provide strong evidence for a common origin in the early mouse YS. Additional in vitro studies suggest instead that mesodermal precursors first generate hemogenic endothelium, which then generate blood cells in a linear sequence. We conducted an in vivo clonal analysis to determine the potential of individual cells in the mouse epiblast, primitive streak, and early YS. We found that early YS blood and endothelial lineages mostly derive from independent epiblast populations, specified before gastrulation. Additionally, a subpopulation of the YS endothelium has hemogenic activity and displays characteristics similar to those found later in the embryonic hemogenic endothelium. Our results show that the earliest blood and endothelial cell populations in the mouse embryo are specified independently, and that hemogenic endothelium first appears in the YS and produces blood precursors with markers related to definitive hematopoiesis.


Asunto(s)
Hemangioblastos/citología , Hematopoyesis , Ratones/embriología , Saco Vitelino/citología , Animales , Linaje de la Célula , Células Clonales , Femenino , Saco Vitelino/irrigación sanguínea
16.
Nature ; 512(7512): 78-81, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043017

RESUMEN

Myeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow microenvironment might contribute to the clinical outcomes of this common event. We previously showed that bone marrow nestin(+) mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin(+) MSCs are consistently reduced in the bone marrow of MPN patients and mice expressing the human JAK2(V617F) mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by bone marrow neural damage and Schwann cell death triggered by interleukin-1ß produced by mutant HSCs. In turn, in vivo depletion of nestin(+) cells or their production of CXCL12 expanded mutant HSC number and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with ß3-adrenergic agonists that restored the sympathetic regulation of nestin(+) MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing the number of leukaemic stem cells. Our results demonstrate that mutant-HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets.


Asunto(s)
Células Madre Hematopoyéticas/patología , Trastornos Mieloproliferativos/patología , Neoplasias/patología , Fibras Nerviosas/patología , Nicho de Células Madre , Sistema Nervioso Simpático/patología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Agonistas de Receptores Adrenérgicos beta 3/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , Janus Quinasa 2/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fibras Nerviosas/efectos de los fármacos , Nestina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores Adrenérgicos beta 3/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología
17.
Stem Cells ; 32(1): 191-203, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24022884

RESUMEN

In the mouse embryo and differentiating embryonic stem cells, the hematopoietic, endothelial, and cardiomyocyte lineages are derived from Flk1+ mesodermal progenitors. Here, we report that surface expression of Podocalyxin (Podxl), a member of the CD34 family of sialomucins, can be used to subdivide the Flk1+ cells in differentiating embryoid bodies at day 4.75 into populations that develop into distinct mesodermal lineages. Definitive hematopoietic potential was restricted to the Flk1+Podxl+ population, while the Flk1-negative Podxl+ population displayed only primitive erythroid potential. The Flk1+Podxl-negative population contained endothelial cells and cardiomyocyte potential. Podxl expression distinguishes Flk1+ mesoderm populations in mouse embryos at days 7.5, 8.5, and 9.5 and is a marker of progenitor stage primitive erythroblasts. These findings identify Podxl as a useful tool for separating distinct mesodermal lineages.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Mesodermo/metabolismo , Células Madre Pluripotentes/metabolismo , Sialoglicoproteínas/biosíntesis , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Endoteliales/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mesodermo/citología , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/citología , Sialoglicoproteínas/metabolismo , Análisis de Matrices Tisulares
18.
Genesis ; 51(11): 751-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23913596

RESUMEN

Primitive erythropoiesis is a vital process for mammalian embryonic development. Here we report the generation and characterization of a new transgenic mouse line that expresses a histone H2B-CFP fusion protein in the nuclei of primitive erythroid cells. We demonstrate the potential of this ε-globin-histone H2B-CFP line for multicolor imaging and flow cytometry analysis. The ε-globin-H2B-CFP line was used to analyze the cell cycle distribution and proliferation of CFP-expressing primitive erythroblasts from E8.5-E13.5. We also evaluated phagocytosis of extruded CFP-positive nuclei by macrophages in fetal liver and placenta. The ε-globin-H2B-CFP transgenic mouse line adds to the available tools for studying the development of the primitive erythroid lineage.


Asunto(s)
Eritroblastos/fisiología , Eritropoyesis , Proteínas Fluorescentes Verdes/metabolismo , Animales , Linaje de la Célula , Núcleo Celular/fisiología , Proliferación Celular , Embrión de Mamíferos , Eritroblastos/citología , Eritropoyesis/genética , Genes Reporteros , Genotipo , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Transgénicos , Fagocitosis , Proteínas Recombinantes de Fusión/metabolismo , Globinas épsilon/genética , Globinas épsilon/metabolismo
19.
Cell Rep ; 3(5): 1714-24, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23623496

RESUMEN

Strategies for expanding hematopoietic stem cells (HSCs) include coculture with cells that recapitulate their natural microenvironment, such as bone marrow stromal stem/progenitor cells (BMSCs). Plastic-adherent BMSCs may be insufficient to preserve primitive HSCs. Here, we describe a method of isolating and culturing human BMSCs as nonadherent mesenchymal spheres. Human mesenspheres were derived from CD45- CD31- CD71- CD146+ CD105+ nestin+ cells but could also be simply grown from fetal and adult BM CD45--enriched cells. Human mesenspheres robustly differentiated into mesenchymal lineages. In culture conditions where they displayed a relatively undifferentiated phenotype, with decreased adherence to plastic and increased self-renewal, they promoted enhanced expansion of cord blood CD34+ cells through secreted soluble factors. Expanded HSCs were serially transplantable in immunodeficient mice and significantly increased long-term human hematopoietic engraftment. These results pave the way for culture techniques that preserve the self-renewal of human BMSCs and their ability to support functional HSCs.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Técnicas de Cocultivo , Sangre Fetal/citología , Sangre Fetal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Nestina/metabolismo
20.
Blood ; 119(21): 4828-37, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22337720

RESUMEN

Erythroid (red blood) cells are the first cell type to be specified in the postimplantation mammalian embryo and serve highly specialized, essential functions throughout gestation and postnatal life. The existence of 2 developmentally and morphologically distinct erythroid lineages, primitive (embryonic) and definitive (adult), was described for the mammalian embryo more than a century ago. Cells of the primitive erythroid lineage support the transition from rapidly growing embryo to fetus, whereas definitive erythrocytes function during the transition from fetal life to birth and continue to be crucial for a variety of normal physiologic processes. Over the past few years, it has become apparent that the ontogeny and maturation of these lineages are more complex than previously appreciated. In this review, we highlight some common and distinguishing features of the red blood cell lineages and summarize advances in our understanding of how these cells develop and differentiate throughout mammalian ontogeny.


Asunto(s)
Desarrollo Embrionario/fisiología , Eritropoyesis/fisiología , Mamíferos/embriología , Animales , Embrión de Mamíferos , Eritrocitos/fisiología , Células Eritroides/citología , Eritropoyesis/genética , Humanos , Mamíferos/fisiología , Modelos Biológicos , Saco Vitelino/irrigación sanguínea , Saco Vitelino/citología , Saco Vitelino/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...