Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 29(7): 1020-1032, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37041032

RESUMEN

The level of each RNA species depends on the balance between its rates of production and decay. Although previous studies have measured RNA decay across the genome in tissue culture and single-celled organisms, few experiments have been performed in intact complex tissues and organs. It is therefore unclear whether the determinants of RNA decay found in cultured cells are preserved in an intact tissue, and whether they differ between neighboring cell types and are regulated during development. To address these questions, we measured RNA synthesis and decay rates genome wide via metabolic labeling of whole cultured Drosophila larval brains using 4-thiouridine. Our analysis revealed that decay rates span a range of more than 100-fold, and that RNA stability is linked to gene function, with mRNAs encoding transcription factors being much less stable than mRNAs involved in core metabolic functions. Surprisingly, among transcription factor mRNAs there was a clear demarcation between more widely used transcription factors and those that are expressed only transiently during development. mRNAs encoding transient transcription factors are among the least stable in the brain. These mRNAs are characterized by epigenetic silencing in most cell types, as shown by their enrichment with the histone modification H3K27me3. Our data suggest the presence of an mRNA destabilizing mechanism targeted to these transiently expressed transcription factors to allow their levels to be regulated rapidly with high precision. Our study also demonstrates a general method for measuring mRNA transcription and decay rates in intact organs or tissues, offering insights into the role of mRNA stability in the regulation of complex developmental programs.


Asunto(s)
Drosophila , Factores de Transcripción , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Drosophila/genética , Larva/genética , Larva/metabolismo , Encéfalo/metabolismo , Estabilidad del ARN
2.
Biol Open ; 9(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205310

RESUMEN

During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Poliadenilación , ARN Mensajero/genética , Factores de Transcripción/genética , Regiones no Traducidas 3' , Animales , Proteínas de Drosophila/metabolismo , Inmunohistoquímica , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
3.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32040548

RESUMEN

Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculo Esquelético/embriología , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Proteínas de Unión al ARN/genética , Factores de Tiempo
4.
Biol Open ; 9(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988092

RESUMEN

During vertebrate embryonic development, the formation of axial structures is driven by a population of stem-like cells that reside in a region of the tailbud called the chordoneural hinge (CNH). We have compared the mouse CNH transcriptome with those of surrounding tissues and shown that the CNH and tailbud mesoderm are transcriptionally similar, and distinct from the presomitic mesoderm. Amongst CNH-enriched genes are several that are required for axial elongation, including Wnt3a, Cdx2, Brachyury/T and Fgf8, and androgen/oestrogen receptor nuclear signalling components such as Greb1 We show that the pattern and duration of tailbud Greb1 expression is conserved in mouse, zebrafish and chicken embryos, and that Greb1 is required for axial elongation and somitogenesis in zebrafish embryos. The axial truncation phenotype of Greb1 morphant embryos can be explained by much reduced expression of No tail (Ntl/Brachyury), which is required for axial progenitor maintenance. Posterior segmentation defects in the morphants (including misexpression of genes such as mespb, myoD and papC) appear to result, in part, from lost expression of the segmentation clock gene, her7.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de la Membrana/genética , Morfogénesis/genética , Proteínas de Neoplasias/genética , Proteínas de Pez Cebra/genética , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Fenotipo , Células Madre/citología , Células Madre/metabolismo , Transcriptoma
5.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31934860

RESUMEN

The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.


The brain is a highly complex organ made up of huge numbers of different cell types that connect up to form a precise network. All these different cell types are generated from the repeated division of a relatively small pool of cells called neural stem cells. The division of these cells needs to be carefully regulated so that the correct number and type of nerve cells are produced at the right time and place. But it remains unclear how the division rate of individual neural stem cells is controlled during development. Controlling these divisions requires the activity of countless genes to be tightly regulated over space and time. When a gene is active, it is copied via a process called transcription into a single-stranded molecule known as messenger RNA (or mRNA for short). This molecule provides the instructions needed to build the protein encoded within the gene. Proteins are the functional building blocks of all cells. The conventional way of controlling protein levels is to vary the number of mRNA molecules made by transcription. Now, Samuels et al. reveal a second mechanism of determining protein levels in the brain, through regulating the stability of mRNA after it is transcribed. Samuels et al. discovered that a key regulatory protein called Imp controls the growth and division of individual neural stem cells in the brains of developing fruit flies. The experiments showed that Imp binds to mRNA molecules that contain the code for a protein called Myc, which is known to drive cell growth and division in many different cell types. Both human Imp and Myc have been implicated in cancer. Using a technique that images single molecules of mRNA, Samuels et al. showed that the Imp protein in stem cells stabilises the mRNA molecule coding for Myc. This means that when more Imp is present, more Myc protein gets produced. Thus, the level of Imp in each individual neural stem cell fine-tunes the rate at which the cell grows and divides: the higher the level of Imp, the larger the stem cell and the faster it divides. These findings underscore how important post-transcriptional processes are for regulating gene activity in the developing brain. The methods used in this study to study mRNA molecules in single cells also provide new insights that could not be derived from the average measurements of many cells. Similar methods could also be applied to other developmental systems in the future.


Asunto(s)
Encéfalo/embriología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/citología , Estabilidad del ARN , Proteínas de Unión al ARN/química , Factores de Transcripción/metabolismo , Animales , Encéfalo/citología , Diferenciación Celular , Proliferación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Hibridación Fluorescente in Situ , Larva , Masculino , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Células-Madre Neurales/metabolismo , Unión Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal
6.
Development ; 144(19): 3454-3464, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851709

RESUMEN

The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a 'decommissioning' phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Complejo Mediador/metabolismo , Modelos Biológicos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Células-Madre Neurales/citología , Unión Proteica , Pupa/metabolismo , Proteínas de Unión al ARN/genética
7.
Methods ; 126: 166-176, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28651965

RESUMEN

RNA in situ hybridization is a powerful method to investigate post-transcriptional regulation, but analysis of intracellular mRNA distributions in thick, complex tissues like the brain poses significant challenges. Here, we describe the application of single-molecule fluorescent in situ hybridization (smFISH) to quantitate primary nascent transcription and post-transcriptional regulation in whole-mount Drosophila larval and adult brains. Combining immunofluorescence and smFISH probes for different regions of a single gene, i.e., exons, 3'UTR, and introns, we show examples of a gene that is regulated post-transcriptionally and one that is regulated at the level of transcription. Our simple and rapid protocol can be used to co-visualise a variety of different transcripts and proteins in neuronal stem cells as well as deep brain structures such as mushroom body neuropils, using conventional confocal microscopy. Finally, we introduce the use of smFISH as a sensitive alternative to immunofluorescence for labelling specific neural stem cell populations in the brain.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Drosophila/citología , Drosophila/fisiología , Hibridación Fluorescente in Situ/métodos , Imagen Individual de Molécula/métodos , Animales , Drosophila/química , Procesamiento Postranscripcional del ARN/fisiología
8.
Genes Dev ; 28(16): 1772-85, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25081352

RESUMEN

Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Intrones/genética , Empalme del ARN/fisiología , Animales , Proteínas Argonautas/genética , Células Cultivadas , Elementos Transponibles de ADN/genética , Drosophila/clasificación , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Ovario/metabolismo , Precursores del ARN/metabolismo
10.
EMBO J ; 33(14): 1582-98, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24920579

RESUMEN

We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endosomas/metabolismo , Modelos Biológicos , Neuronas Motoras/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Proteínas del Citoesqueleto/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Proteínas Luminiscentes , Ratones , Microscopía Electrónica de Transmisión , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Proteína Fluorescente Roja
11.
Development ; 141(8): 1780-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715465

RESUMEN

Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.


Asunto(s)
Relojes Biológicos , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Somitos/citología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Embrión no Mamífero/metabolismo , Respuesta al Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Factores de Tiempo , Transgenes , Pez Cebra/embriología , Pez Cebra/metabolismo
12.
G3 (Bethesda) ; 4(4): 749-60, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24531791

RESUMEN

We have screened chromosome arm 3L for ethyl methanesulfonate-induced mutations that disrupt localization of fluorescently labeled gurken (grk) messenger (m)RNA, whose transport along microtubules establishes both major body axes of the developing Drosophila oocyte. Rapid identification of causative mutations by single-nucleotide polymorphism recombinational mapping and whole-genomic sequencing allowed us to define nine complementation groups affecting grk mRNA localization and other aspects of oogenesis, including alleles of elg1, scaf6, quemao, nudE, Tsc2/gigas, rasp, and Chd5/Wrb, and several null alleles of the armitage Piwi-pathway gene. Analysis of a newly induced kinesin light chain allele shows that kinesin motor activity is required for both efficient grk mRNA localization and oocyte centrosome integrity. We also show that initiation of the dorsoanterior localization of grk mRNA precedes centrosome localization, suggesting that microtubule self-organization contributes to breaking axial symmetry to generate a unique dorsoventral axis.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila/metabolismo , ARN/metabolismo , Factor de Crecimiento Transformador alfa/genética , Animales , Mapeo Cromosómico , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Oocitos/metabolismo , Oogénesis , Polimorfismo de Nucleótido Simple , ARN/química , ARN Mensajero/análisis , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Factor de Crecimiento Transformador alfa/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(46): E4316-24, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24151332

RESUMEN

Sequential production of body segments in vertebrate embryos is regulated by a molecular oscillator (the segmentation clock) that drives cyclic transcription of genes involved in positioning intersegmental boundaries. Mathematical modeling indicates that the period of the clock depends on the total delay kinetics of a negative feedback circuit, including those associated with the synthesis of transcripts encoding clock components [Lewis J (2003) Curr Biol 13(16):1398-1408]. Here, we measure expression delays for three transcripts [Lunatic fringe, Hes7/her1, and Notch-regulated-ankyrin-repeat-protein (Nrarp)], that cycle during segmentation in the zebrafish, chick, and mouse, and provide in vivo measurements of endogenous splicing and export kinetics. We show that mRNA splicing and export are much slower than transcript elongation, with the longest delay (about 16 min in the mouse) being due to mRNA export. We conclude that the kinetics of mRNA and protein production and destruction can account for much of the clock period, and provide strong support for delayed autorepression as the underlying mechanism of the segmentation clock.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Embrión de Pollo , Glicosiltransferasas/metabolismo , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas/metabolismo , Empalme del ARN/fisiología , Especificidad de la Especie , Factores de Tiempo , Pez Cebra
14.
Mech Dev ; 129(1-4): 61-72, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22326607

RESUMEN

Regular production of somites, precursors of the axial skeleton and attached muscles is controlled by a molecular oscillator, the segmentation clock, which drives cyclic transcription of target genes in the unsegmented presomitic mesoderm (PSM). The clock is based on a negative feedback loop which generates pulses of transcription that oscillate with the same periodicity as somite formation. Mutants in several oscillating genes including the Notch pathway gene Lunatic fringe (Lfng) and the Notch target Hes7, result in defective somitogenesis and disorganised axial skeletons. Both genes encode negative regulators of Notch signalling output, but it is not yet clear if they are just secondary clock targets or if they encode components of a primary, pacemaker oscillator. In this paper, we try to identify components in the primary oscillator by manipulating delays in the feedback circuitry. We characterise recombinant mice in which Lfng and Hes7 introns are lengthened in order to delay mRNA production. Lengthening the third Hes7 intron by 10 or 20 kb disrupts accurate RNA splicing and inactivates the gene. Lfng expression and activity is normal in mice whose Lfng is lengthened by 10 kb, but no effects on segmentation are evident. We discuss these results in terms of the relative contributions of transcriptional and post-transcriptional delays towards defining the pace of segmentation, and of alternative strategies for manipulating the period of the clock.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Glicosiltransferasas/genética , ARN Mensajero/genética , Empalme Alternativo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Tipificación del Cuerpo , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Glicosiltransferasas/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Somitos/anomalías , Somitos/embriología , Somitos/metabolismo
15.
PLoS One ; 5(8): e12356, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20827300

RESUMEN

BACKGROUND: Integrin-linked kinase (ILK) is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3) peptide and the 20-kDa regulatory light chains of myosin (LC(20)). Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2) causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the K(m) for MnATP is approximately 150-fold less than that for MgATP). CONCLUSIONS/SIGNIFICANCE: Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Manganeso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Actinina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Cinética , Lisina , Proteínas de Microfilamentos , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
16.
Development ; 137(21): 3591-601, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876653

RESUMEN

Integrins act at signalling crossroads, and their interactions with other signal transduction pathways are key to the regulation of normal and pathological cell cytoarchitecture and behaviour. Here, we describe a signalling cascade that acts during the formation of the defining segmental features of the vertebrate body - the somites - in which ß1-integrin activity regulates epithelialisation by controlling downstream Wnt and Notch activity crucial for somite border formation. Using in vivo transcriptional inhibition in the developing chick embryo, we show that ß1-integrin in the anterior presomitic mesoderm activates canonical Wnt signalling in a cell-autonomous, `outside-inside' manner. Signalling is mediated by integrin-linked kinase (ILK), leading to modulation of glycogen synthase kinase 3ß (GSK3ß) phosphorylation, and activates Notch signalling in the anterior presomitic mesoderm. The two signalling pathways then cooperate to promote somite formation via cMESO1/Mesp2. Our results show that ß1-integrin can regulate cell shape and tissue morphogenesis indirectly, by regulation of downstream signalling cascades.


Asunto(s)
Integrina beta1/fisiología , Receptores Notch/metabolismo , Somitos/embriología , Proteínas Wnt/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión de Pollo , Técnicas de Cultivo de Embriones , Técnicas de Silenciamiento del Gen , Integrina beta1/genética , Modelos Biológicos , Organogénesis/genética , Organogénesis/fisiología , Receptores Notch/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Somitos/metabolismo , Proteínas Wnt/fisiología
17.
Nat Struct Mol Biol ; 17(6): 703-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473315

RESUMEN

Microtubule-based mRNA transport is widely used to restrict protein expression to specific regions in the cell and has important roles in defining cell polarity and axis determination as well as in neuronal function. However, the structural basis of recognition of cis-acting mRNA localization signals by motor complexes is poorly understood. We have used NMR spectroscopy to describe the first tertiary structure to our knowledge of an RNA element responsible for mRNA transport. The Drosophila melanogaster fs(1)K10 signal, which mediates transport by the dynein motor, forms a stem loop with two double-stranded RNA helices adopting an unusual A'-form conformation with widened major grooves reminiscent of those in B-form DNA. Structure determination of four mutant RNAs and extensive functional assays in Drosophila embryos indicate that the two spatially registered A'-form helices represent critical recognition sites for the transport machinery. Our study provides insights into the basis for RNA cargo recognition and reveals a key biological function encoded by A'-form RNA conformation.


Asunto(s)
Drosophila melanogaster/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Dineínas/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Transporte de ARN , ARN Mensajero/genética , Transducción de Señal , Factores de Transcripción
18.
Biotechniques ; 48(1): 53-60, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20078428

RESUMEN

One of the many advantages of Drosophila melanogaster as a model organism is the relative ease with which gene deletions can be generated by imprecise excision of transposon insertions. Here, we describe a simple, fast, and efficient method of screening for single-gene excision events that is not biased by prior assumptions of the mutant phenotype. DNA sequence polymorphisms were used as co-dominant electrophoretic markers to identify candidate deletions in a single generation, and to delimit the breakpoints to within 0.5-1 kb, thereby rapidly identifying deficiencies that affect only the gene of interest. In addition, we used polymorphism profiling to map existing deficiencies. The method can also be applied to map the extent of deletions generated by x-rays and to identify targeted mutations generated by engineered zinc-finger nucleases in Drosophila and other polymorphic model organisms (e.g., zebrafish, mouse, Caenorhabditis elegans).


Asunto(s)
Deleción Cromosómica , Mapeo Cromosómico/métodos , Drosophila melanogaster/genética , Polimorfismo Genético , Animales , Secuencia de Bases , Eliminación de Gen
19.
PLoS One ; 4(11): e7996, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19956724

RESUMEN

Vertebrate segmentation is regulated by the "segmentation clock", which drives cyclic expression of several genes in the caudal presomitic mesoderm (PSM). One such gene is Lunatic fringe (Lfng), which encodes a modifier of Notch signalling, and which is also expressed in a stripe at the cranial end of the PSM, adjacent to the newly forming somite border. We have investigated the functional requirements for these modes of Lfng expression during somitogenesis by generating mice in which Lfng is expressed in the cranial stripe but strongly reduced in the caudal PSM, and find that requirements for Lfng activity alter during axial growth. Formation of cervical, thoracic and lumbar somites/vertebrae, but not sacral and adjacent tail somites/vertebrae, depends on caudal, cyclic Lfng expression. Indeed, the sacral region segments normally in the complete absence of Lfng and shows a reduced requirement for another oscillating gene, Hes7, indicating that the architecture of the clock alters as segmentation progresses. We present evidence that Lfng controls dorsal-ventral axis specification in the tail, and also suggest that Lfng controls the expression or activity of a long-range signal that regulates axial extension.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/fisiología , Somitos/metabolismo , Animales , Tipificación del Cuerpo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Oscilometría/métodos , Fenotipo , Factores de Tiempo
20.
Genome Biol ; 9(1): 205, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18254933

RESUMEN

The Drosophila Groucho (Gro) protein was the founding member of the family of transcriptional co-repressor proteins that now includes the transducin-like enhancer of split (TLE) and Grorelated gene (Grg) proteins in vertebrates. Gro family proteins do not bind DNA directly, but are recruited by a diverse profile of transcription factors, including members of the Hes, Runx, Nkx, LEF1/Tcf, Pax, Six and c-Myc families. The primary structure of Gro proteins includes five identifiable regions, of which the most highly conserved are the amino-terminal glutamine-rich Q domain and the carboxy-terminal WD-repeat domain. The Q domain contains two coiled-coil motifs that facilitate oligomerization into tetramers and binding to some transcription factors. The WD domain folds to form a beta-propeller, which mediates protein-protein interactions. Many transcription factors interact with the WD domain via a short peptide motif that falls into either of two classes: WRPW and related tetrapeptides; and the 'eh1' motif (FxIxxIL). Gro family proteins are broadly expressed during development and in the adult. They have essential functions in many developmental pathways (including Notch and Wnt signaling) and are implicated in the pathogenesis of some cancers. The molecular mechanisms through which Gro proteins act to repress transcription are not yet well understood. It is becoming clear that Gro proteins have different modes of action in vivo dependent on biological context and these include direct and indirect modification of chromatin structure at target genes.


Asunto(s)
Proteínas Co-Represoras/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Quimiocina CXCL1/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/fisiología , Proteínas Co-Represoras/química , Proteínas Co-Represoras/genética , Humanos , Neoplasias/etiología , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...