Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277363

RESUMEN

BackgroundMonoclonal antibody (mAb) treatment for COVID-19 has been underutilized due to logistical challenges, lack of access and variable treatment awareness among patients and providers. The use of telehealth during the pandemic provides an opportunity to increase access to COVID care. MethodsThis is a single-center descriptive study of telehealth-based patient self-referral for mAb therapy between March 1, 2021 to October 31, 2021 at Baltimore Convention Center Field Hospital (BCCFH). ResultsAmong the 1001 self-referral patients, the mean age was 47, and most were female (57%) white (66%), and had a primary care provider (62%). During the study period, self-referrals increased from 14 per month in March to 427 in October resulting in a 30-fold increase. About 57% of self-referred patients received a telehealth visit, and of those 82% of patients received mAb infusion therapy, either onsite or at other infusion sites. The median time from self-referral to onsite infusion was 2 days (1-3 IQR). DiscussionOur study shows the integration of telehealth with a self-referral process improved access to mAb infusion. A high proportion of self-referrals were appropriate and led to timely treatment. Incorporation of self-referral and telehealth for monoclonal antibody therapy led to successful timely infusions. This approach helped those without traditional avenues for care and avoided potential delay for patients seeking referral from their medical providers.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277360

RESUMEN

Background and MethodsWe conducted a single center cross-sectional study to investigate racial disparities in the hesitancy and utilization of monoclonal antibody (mAb) treatment of COVID-19 among treatment eligible patients who were referred to the infusion center between January 4, 2021 and May 14, 2021. ResultsAmong the 2,406 eligible participants, African Americans were significantly more likely to underutilize mAb treatment (OR 1.8; 95% CI 1.5-2.1) and miss treatment opportunities due to monoclonal hesitancy (OR 1.7, 95% CI 1.3-2.1). ConclusionAddressing racial disparities in mAb delivery is an opportunity to bridge the racial inequities in COVID-19 care.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22268788

RESUMEN

SARS-CoV-2 continues to develop new, increasingly infectious variants including delta and omicron. We evaluated the efficacy of the Abbott BinaxNOW Rapid Antigen Test against Reverse Transcription Polymerase Chain Reaction ("RT-PCR") in 1054 pediatric participants presenting to a high-volume Coronavirus Disease 2019 (COVID-19) testing site while the delta variant was predominant. Participants were grouped by COVID-19 exposure and symptom status. RT-PCR demonstrated an overall prevalence of 5.2%. For all participants, sensitivity of the BinaxNOW was 92.7% (95% CI 82.4%-98.0%) and specificity was 98.0% (95% CI 97.0%-98.8%). For symptomatic participants, positive predictive value (PPV) was 72.7% (95% CI 54.5%-86.7%) and negative predictive value (NPV) was 99.2% (95% CI 98.2%-100%). Among asymptomatic participants, PPV was 71.4% (95% CI 53.7%-85.4%) and NPV was 99.7% (95% CI 99.0%-100%). Our reported sensitivity and NPV are higher than other pediatric studies, potentially because of higher viral load from the delta variant, but specificity and PPV are lower. ImportanceThe BinaxNOW rapid antigen COVID-19 test had a sensitivity of nearly 92% in both symptomatic and asymptomatic children when performed at a high-throughput setting during the more transmissible delta variant dominant period. The test may play an invaluable role in asymptomatic screening and keeping children safe in school.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-467705

RESUMEN

The precise molecular mechanisms behind life-threatening lung abnormalities during severe SARS-CoV-2 infections are still unclear. To address this challenge, we performed whole transcriptome sequencing of lung autopsies from 31 patients suffering from severe COVID-19 related complications and 10 uninfected controls. Using a metatranscriptome analysis of lung tissue samples we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant "classical" signature (n=23) showed upregulation of unfolded protein response, steroid biosynthesis and complement activation supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) potentially representing "Cytokine Release Syndrome" (CRS) showed upregulation of cytokines such IL1 and CCL19 but absence of complement activation and muted inflammation. Further, dissecting expression of individual genes within enriched pathways for patient signature suggests heterogeneity in host response to the primary infection. We found that the majority of patients cleared the SARS-CoV-2 infection, but all suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in "classical" patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients that can be identified through the status of the complement activation, presence of specific cytokines and characteristic microbiome. This information can be used to design personalized therapy to treat COVID-19 related complications corresponding to patient signature such as using the identified drug molecules or mitigating specific secondary infections.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21255447

RESUMEN

Host genetic variants can determine the susceptibility to COVID-19 infection and severity as noted in a recent Genome-wide Association Study (GWAS) by Pairo-Castineira et al.1. Given the prominent genetic differences in Indian sub-populations as well as differential prevalence of COVID-19, here, we deploy the previous study and compute genetic risk scores in different Indian sub-populations that may predict the severity of COVID-19 outcomes in them. We computed polygenic risk scores (PRSs) in different Indian sub-populations with the top 100 single-nucleotide polymorphisms (SNPs) with a p-value cutoff of 10-6 derived from the previous GWAS summary statistics1. We selected SNPs overlapping with the Indian Genome Variation Consortium (IGVC) and with similar frequencies in the Indian population. For each population, median PRS was calculated, and a correlation analysis was performed to test the association of these genetic risk scores with COVID-19 mortality. We found a varying distribution of PRS in Indian sub-populations. Correlation analysis indicates a positive linear association between PRS and COVID-19 deaths. This was not observed with non-risk alleles in Indian sub-populations. Our analyses suggest that Indian sub-populations differ with respect to the genetic risk for developing COVID-19 mediated critical illness. Combining PRSs with other observed risk-factors in a Bayesian framework can provide a better prediction model for ascertaining high COVID-19 risk groups. This has a potential utility in the design of more effective vaccine disbursal schemes.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20081182

RESUMEN

Besides severe respiratory distress, recent reports in Covid-19 patients have found a strong association between platelet counts and patient survival. Along with hemodynamic changes such as prolonged clotting time, high fibrin degradation products and D-dimers, increased levels of monocytes with disturbed morphology have also been identified. In this study, through an integrated analysis of bulk RNA-sequencing data from Covid-19 patients with data from single-cell sequencing studies on lung tissues, we found that most of the cell-types that contributed to the altered gene expression were of hematopoietic origin. We also found that differentially expressed genes in Covid-19 patients formed a significant pool of the expressing genes in phagocytic cells such as Monocytes and platelets. Interestingly, while we observed a general enrichment for Monocytes in Covid-19 patients, we found that the signal for FCGRA3+ Monocytes was depleted. Further, we found evidence that age-associated gene expression changes in Monocytes and platelets, associated with inflammation, mirror gene expression changes in Covid-19 patients suggesting that pro-inflammatory signalling during aging may worsen the infection in older patients. We identified more than 20 genes that change in the same direction between Covid-19 infection and aging cells that may act as potential therapeutic targets. Of particular interest were IL2RG, GNLY and GMZA expressed in platelets, which facilitates cytokine signalling in Monocytes through an interaction with platelets. To understand whether infection can directly manipulate the biology of Monocytes and platelets, we hypothesize that these non-ACE2 expressing cells may be infected by the virus through the phagocytic route. We observed that phagocytic cells such as Monocytes, T-cells, and platelets have a significantly higher expression of genes that are a part of the Covid-19 viral interactome. Hence these cell-types may have an active rather than a reactive role in viral pathogenesis to manifest clinical symptoms such as coagulopathy. Therefore, our results present molecular evidence for pursuing both anti-inflammatory and anticoagulation therapy for better patient management especially in older patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA