Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 111(11): 1798-1807, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37539635

RESUMEN

The development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp). The DNA-surfactant complexes were blended with a polylactic acid (PLA) biopolymer and electrospun to obtain nanofibers, and then copper nanoparticles were synthesized on nanofibrous webs. Scanning electron microscopic images showed that all nanofibers possessed uniform morphology. Interestingly, different diameters were observed depending on the base pairs in the DNA complex. Transmission electron microscopy showed uniform growth of copper nanoparticles on the nanofibers. Fourier-transform infrared spectroscopy spectra confirmed the uniform blending of both types of DNA complexes in PLA. Both stDNA- and hsDNA-derived nanofibers showed greater biocompatibility than native PLA nanofibers. Furthermore, they exerted significant antibacterial activity in the presence of copper nanoparticles. This study demonstrates that DNA is a potentially useful material to generate electrospun nanofibrous webs for use in biomedical sciences and technologies.


Asunto(s)
Nanofibras , Masculino , Humanos , Nanofibras/química , Cobre , Semen , Poliésteres/química , Materiales Biocompatibles/química , Tensoactivos , ADN
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770508

RESUMEN

Nanomaterials have attracted attention for application in photocatalytic hydrogen production because of their beneficial properties such as high specific surface area, attractive morphology, and high light absorption. Furthermore, hydrogen is a clean and green source of energy that may help to resolve the existing energy crisis and increasing environmental pollution caused by the consumption of fossil fuels. Among various hydrogen production methods, photocatalytic water splitting is most significant because it utilizes solar light, a freely available energy source throughout the world, activated via semiconductor nanomaterial catalysts. Various types of photocatalysts are developed for this purpose, including carbon-based and transition-metal-based photocatalysts, and each has its advantages and disadvantages. The present review highlights the basic principle of water splitting and various techniques such as the thermochemical process, electrocatalytic process, and direct solar water splitting to enhance hydrogen production. Moreover, modification strategies such as band gap engineering, semiconductor alloys, and multiphoton photocatalysts have been reviewed. Furthermore, the Z- and S-schemes of heterojunction photocatalysts for water splitting were also reviewed. Ultimately, the strategies for developing efficient, practical, highly efficient, and novel visible-light-harvesting photocatalysts will be discussed, in addition to the challenges that are involved. This review can provide researchers with a reference for the current state of affairs, and may motivate them to develop new materials for hydrogen generation.

3.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054700

RESUMEN

To eliminate imidacloprid insecticide from wastewater, nanocalcite was grafted onto the surface of pretreated polyester fabric. The process of seeding was followed by the low temperature hydrothermal method for the growth of nanocalcite for the functionalization of fabric. The goal of this study was to improve the hydrophilicity of the nanocalcite photocatalyst that had been grafted onto the surface of polyester fabric (PF) using acidic and basic prewetting techniques. The morphological characteristics, crystalline nature, surface charge density, functional groups of surface-modified nanocalcite @ PF were determined via SEM, XRD, FTIR, and Zeta potential (ZP), respectively. Characterization results critically disclosed surface roughness due to excessive induction of hydroxyl groups, rhombohedral crystal structure, and high charge density (0.721 mS/cm). Moreover, contact angle of nanocalcite @ PF was calculated to be 137.54° while after acidic and basic prewetting, it was reduced to 87.17° and 48.19°. Similarly, bandgap of the as fabricated nanocalcite was found to be 3.5 eV, while basic prewetted PF showed a reduction in band gap (2.9 eV). The solar photocatalytic mineralization of imidacloprid as a probe pollutant was used to assess the improvement in photocatalytic activity of nanocalcite @ PF after prewetting. Response surface methodology was used to statistically optimize the solar exposure time, concentration of the oxidant, and initial pH of the reaction mixture. Maximum solar photocatalytic degradation of the imidacloprid was achieved by basic prewetted nanocalcite @ PF (up to 91.49%), which was superior to acidic prewetted fabric and as-fabricated nanocalcite @ PF. Furthermore, HPLC and FTIR findings further indicated that imidacloprid was decomposed vastly to harmless species by basic prewetted nanocalcite @ PF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA