Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838155

RESUMEN

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Proteínas de Dominio T Box , Células TH1 , Células Th2 , Células TH1/inmunología , Células TH1/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Animales , Linaje de la Célula/genética , Células Th2/inmunología , Células Th2/metabolismo , Ratones , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Interferón gamma/metabolismo , Regulación de la Expresión Génica , Citocinas/metabolismo
2.
Comput Struct Biotechnol J ; 23: 1886-1896, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721585

RESUMEN

Recent advances in single-cell omics technology have transformed the landscape of cellular and molecular research, enriching the scope and intricacy of cellular characterisation. Perturbation modelling seeks to comprehensively grasp the effects of external influences like disease onset or molecular knock-outs or external stimulants on cellular physiology, specifically on transcription factors, signal transducers, biological pathways, and dynamic cell states. Machine and deep learning tools transform complex perturbational phenomena in algorithmically tractable tasks to formulate predictions based on various types of single-cell datasets. However, the recent surge in tools and datasets makes it challenging for experimental biologists and computational scientists to keep track of the recent advances in this rapidly expanding filed of single-cell modelling. Here, we recapitulate the main objectives of perturbation modelling and summarise novel single-cell perturbation technologies based on genetic manipulation like CRISPR or compounds, spanning across omic modalities. We then concisely review a burgeoning group of computational methods extending from classical statistical inference methodologies to various machine and deep learning architectures like shallow models or autoencoders, to biologically informed approaches based on gene regulatory networks, and to combinatorial efforts reminiscent of ensemble learning. We also discuss the rising trend of large foundational models in single-cell perturbation modelling inspired by large language models. Lastly, we critically assess the challenges that underline single-cell perturbation modelling while pointing towards relevant future perspectives like perturbation atlases, multi-omics and spatial datasets, causal machine learning for interpretability, multi-task learning for performance and explainability as well as prospects for solving interoperability and benchmarking pitfalls.

3.
F1000Res ; 13: 8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779317

RESUMEN

Biomedical research projects are becoming increasingly complex and require technological solutions that support all phases of the data lifecycle and application of the FAIR principles. At the Berlin Institute of Health (BIH), we have developed and established a flexible and cost-effective approach to building customized cloud platforms for supporting research projects. The approach is based on a microservice architecture and on the management of a portfolio of supported services. On this basis, we created and maintained cloud platforms for several international research projects. In this article, we present our approach and argue that building customized cloud platforms can offer multiple advantages over using multi-project platforms. Our approach is transferable to other research environments and can be easily adapted by other projects and other service providers.


Asunto(s)
Investigación Biomédica , Nube Computacional , Manejo de Datos , Humanos , Manejo de Datos/métodos
4.
Neuro Oncol ; 26(8): 1453-1466, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38695342

RESUMEN

BACKGROUND: Glioblastoma is a highly aggressive type of brain tumor for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies. METHODS: Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients. RESULTS: We present the integrative paired single-cell RNA-seq analysis of 76 tumor samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumor cells and the tumor microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumor cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumor cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (P = .0041). CONCLUSIONS: We find a resistance mechanism signature in one fifth of glioblastoma patients associated with a tumor-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumor cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inmunoterapia , Microambiente Tumoral , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Nivolumab/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Células Madre Mesenquimatosas/inmunología , Pronóstico , Tasa de Supervivencia , Biomarcadores de Tumor/genética , Femenino
5.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366144

RESUMEN

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Proteómica , Tronco Encefálico , Cerebelo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA