Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cortex ; 169: 203-219, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948875

RESUMEN

Color has meaning in particular contexts, and the meaning of color can impact behavioral performance. For example, the meaning of color about traffic rules (blue/green and red mean "go" and "stop" respectively) influences reaction times (RTs) to signals. Specifically, in a Go/No-go task, RTs have been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). However, the neurophysiological background of this phenomenon has not been fully understood. The purpose of this study was to investigate the brain oscillatory activity associated with the effect of meaning of color on RTs in the Go/No-go task. Twenty participants performed a Blue simple reaction task, a Red simple reaction task, a Blue Go/Red No-go task, and a Red Go/Blue No-go task. We recorded responses to signals and electroencephalogram (EEG) during the tasks and evaluated RTs and changes in spectral power over time, referred to as event-related synchronization (ERS) and event-related desynchronization (ERD). The behavioral results were similar to previous studies. The EEG results showed that frontal beta ERD and theta ERS were greater when signals were presented in blue than red color in both simple reaction and Go/No-go tasks. In addition, the onset of theta ERS was delayed in the Red Go than Blue Go trial in the Go/No-go task. The enhanced beta ERD may indicate that blue signals facilitate motor response, and the delayed onset of theta ERS may indicate the delayed onset of cognitive process when responding to red signals as compared to blue signals in the Go/No-go task. Thus, this delay in cognitive process can be involved in the slow response in the Red Go/Blue No-go task.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Tiempo de Reacción/fisiología , Encéfalo/fisiología , Sincronización Cortical/fisiología
2.
J Physiol Anthropol ; 42(1): 10, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337272

RESUMEN

BACKGROUND: Synchronous finger tapping to external sensory stimuli is more stable for audiovisual combined stimuli than sole auditory or visual stimuli. In addition, piano players are superior in synchronous tapping and manipulating the ring and little fingers as compared to inexperienced individuals. However, it is currently unknown whether the ability to synchronize to external sensory stimuli with the ring finger is at the level of the index finger in piano players. The aim of this study was to compare the effect of piano experience on synchronization stability between the index and ring fingers using auditory, visual, and audiovisual combined stimuli. METHODS: Thirteen piano players and thirteen novices participated in this study. They were instructed to tap with their index or ring finger synchronously to auditory, visual, and audiovisual combined stimuli. The stimuli were presented from an electronic metronome at 1 Hz, and the tapping was performed 30 times in each condition. We analyzed standard deviation of intervals between the stimulus onset and the tap onset as synchronization stability. RESULTS: Synchronization stability for visual stimuli was lower during ring than index finger tapping in novices; however, this decline was absent in piano players. Also, piano players showed the higher synchronization stability for audiovisual combined stimuli than sole visual and auditory stimuli when tapping with the index finger. On the other hand, in novices, synchronization stability was higher for audiovisual combined stimuli than only visual stimuli. CONCLUSIONS: These findings suggest that improvements of both sensorimotor processing and finger motor control by piano practice would contribute to superior synchronization stability.


Asunto(s)
Percepción Auditiva , Percepción Visual , Humanos , Dedos , Desempeño Psicomotor , Movimiento
3.
Neuroscience ; 517: 50-60, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907432

RESUMEN

Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously. Fourteen healthy adults (five females) performed the 2-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after three different stimulation conditions: tSMS over the left DLPFC, tSMS over the right DLPFC, and sham stimulation. Our preliminary results revealed that while tSMS over the left and right DLPFC impaired working memory performance to a similar extent, the impacts of tSMS on brain oscillatory responses were different between the left and right DLPFC stimulations. Specifically, tSMS over the left DLPFC increased the event-related synchronization in beta band whereas tSMS over the right DLPFC did not show such an effect. These findings support evidence that the left and right DLPFC play different roles in working memory and suggest that the neural mechanism underlying the impairment of working memory by tSMS can be different between left and right DLPFC stimulations.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Humanos , Memoria a Corto Plazo/fisiología , Corteza Prefontal Dorsolateral , Corteza Prefrontal/fisiología , Estimulación Magnética Transcraneal/métodos , Encéfalo , Fenómenos Magnéticos , Estimulación Transcraneal de Corriente Directa/métodos
4.
PLoS One ; 17(12): e0279477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548285

RESUMEN

During submaximal isometric contraction, there are two different load types: maintenance of a constant limb angle while supporting an inertial load (position task) and maintenance of a constant force by pushing against a rigid restraint (force task). Previous studies demonstrated that performing the position task requires more proprioceptive information. The purpose of this study was to investigate whether there would be a difference in cutaneous information processing between the position and force tasks by assessing the gating effect, which is reduction of amplitude of somatosensory evoked potentials (SEPs), and cutaneomuscular reflex (CMR). Eighteen healthy adults participated in this study. They contracted their right first dorsal interosseous muscle by abducting their index finger to produce a constant force against a rigid restraint that was 20% maximum voluntary contraction (force task), or to maintain a target position corresponding to 10° abduction of the metacarpophalangeal joint while supporting a load equivalent to 20% maximum voluntary contraction (position task). During each task, electrical stimulation was applied to the digital nerves of the right index finger, and SEPs and CMR were recorded from C3' of the International 10-20 system and the right first dorsal interosseous muscle, respectively. Reduction of the amplitude of N33 component of SEPs was significantly larger during the force than position task. In addition, the E2 amplitude of CMR was significantly greater for the force than position task. These findings suggest that cutaneous information processing differs with load type during static muscle contraction.


Asunto(s)
Dedos , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiología , Dedos/fisiología , Contracción Muscular/fisiología , Reflejo/fisiología , Piel/inervación , Contracción Isométrica/fisiología , Electromiografía
5.
Heliyon ; 8(5): e09469, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647346

RESUMEN

Prior knowledge of color, such as traffic rules (blue/green and red mean "go" and "stop" respectively), can influence reaction times (RTs). Specifically, in a Go/No-go task, where signals were presented by a light-emitting diode (LED) lighting device, RT has been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). In recent years, a driving simulator has been shown to be effective in evaluation and training of driving skills of dementia and stroke patients. However, it is unknown whether the change in RT observed with the LED lighting device can be replicated with a monitor presenting signals that are different from the real traffic lights in terms of depth and texture. The purpose of this study was to elucidate whether a difference in visual modality (LED and monitor) influences the effect of prior knowledge of color on RTs. Fifteen participants performed a simple reaction task (Blue and Red signals), a Blue Go/Red No-go task, and a Red Go/Blue No-go task. Signals were presented from an LED lighting device (Light condition) and a liquid crystal display (LCD) monitor (Monitor condition). The results showed that there was no significant difference in simple RT by signal color in both conditions. In the Go/No-go task, there was a significant interaction between the type of signal presentation device and the color of signal. Although the RT was significantly longer in the Red Go/Blue No-go than Blue Go/Red No-go task in the Light condition, there was no significant difference in RT between the Blue Go/Red No-go and Red Go/Blue No-go tasks in the Monitor condition. It is interpreted that blue and red signals presented from the LCD monitor were insufficient to evoke a perception of traffic lights as compared to the LED. This study suggests that a difference in the presentation modality (LED and monitor) of visual information can influence the level of object perception and consequently the effect of prior knowledge on behavioral responses.

6.
J Cell Biol ; 220(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33492359

RESUMEN

Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


Asunto(s)
Centriolos/metabolismo , Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Proteínas Nucleares/química , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
7.
Sensors (Basel) ; 18(4)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587424

RESUMEN

A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2 e - was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...