Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 143(12): 2447-2455.e8, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37302620

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis caused by variants in COL7A1-encoded type VII collagen, a major component of anchoring fibrils. In this study, we developed an ex vivo gene therapy for RDEB using autologous mesenchymal stromal cells (MSCs). On the basis of our previous studies, we first attempted to isolate MSCs from the blister fluid of patients with RDEB and succeeded in obtaining cells with a set of MSC characteristics from all 10 patients. We termed these cells blister fluid-derived MSCs. Blister fluid-derived MSCs were genetically modified and injected into skins of type VII collagen-deficient neonatal mice transplanted onto immunodeficient mice, resulting in continuous and widespread expression of type VII collagen at the dermal-epidermal junction, particularly when administered into blisters. When injected intradermally, the efforts were not successful. The gene-modified blister fluid-derived MSCs could be cultured as cell sheets and applied to the dermis with an efficacy equivalent to that of intrablister administration. In conclusion, we successfully developed a minimally invasive and highly efficient ex vivo gene therapy for RDEB. This study shows the successful application of gene therapy in the RDEB mouse model for both early blistering skin and advanced ulcerative lesions.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Epidermólisis Ampollosa Distrófica/patología , Vesícula/genética , Vesícula/terapia , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Piel/patología , Genes Recesivos , Células Madre Mesenquimatosas/metabolismo
2.
Nat Commun ; 13(1): 6880, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371400

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Humanos , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Tirosina , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
3.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498467

RESUMEN

Water hardness (WH) is a useful parameter for testing household water, such as drinking, cooking, and washing water. Many countries around the world use pipeline water in their houses, but there is a need to monitor the WH because hard water has a negative impact on appliances. Currently, WH is often measured using chemical dye-based WH indicators, and these techniques require expensive equipment, and trained personnel. Therefore, a low-cost and simple measurement method has been desired. Here, we report LOTUS-W, which consists of a luciferase, Nanoluc, a yellow fluorescent protein Venus, and a Ca2+/Mg2+ detection domain of human centrin 3. The binding of Ca2+/Mg2+ to this indicator changes the conformation of human centrin 3, and induces bioluminescence resonance energy transfer (BRET) from Nanoluc to Venus, which changes its emission spectrum about 140%. The dissociation constants of LOTUS-W for Ca2+/Mg2+ are approximately several mM, making it suitable for measuring WH in the household water. With this indicator in combination with a smartphone, we have demonstrated that it is possible to evaluate WH easily and quickly. This novel indicator has the potential to be used for measuring not only household water but also water used in the food industry, etc.


Asunto(s)
Agua Potable/análisis , Mediciones Luminiscentes , Proteínas de Unión al Calcio/química , Transferencia de Energía , Dureza , Humanos , Luciferasas/química , Proteínas Luminiscentes
4.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415503

RESUMEN

The E. coli GroEL/GroES chaperonin complex acts as a folding cage by producing a bullet-like asymmetric complex, and GroEL exists as double rings regardless of the presence of adenosine triphosphate (ATP). Its mammalian chaperonin homolog, heat shock protein, HSP60, and co-chaperonin, HSP10, play an essential role in protein folding by capturing unfolded proteins in the HSP60/HSP10 complex. However, the structural transition in ATPase-dependent reaction cycle has remained unclear. We found nucleotide-dependent association and dissociation of the HSP60/HSP10 complex using various analytical techniques under near physiological conditions. Our results showed that HSP60 exist as a significant number of double-ring complexes (football- and bullet-type complexes) and a small number of single-ring complexes in the presence of ATP and HSP10. HSP10 binds to HSP60 in the presence of ATP, which increased the HSP60 double-ring formation. After ATP is hydrolyzed to Adenosine diphosphate (ADP), HSP60 released the HSP10 and the dissociation of the double-ring to single-rings occurred. These results indicated that HSP60/HSP10 undergoes an ATP-dependent transition between the single- and double-rings in their system that is highly distinctive from the GroEL/GroES system particularly in the manner of complex formation and the roles of ATP binding and hydrolysis in the reaction cycle.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Fenómenos Químicos , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/química , Chaperonina 10/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Estructura Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica
5.
Biol Open ; 6(7): 1041-1055, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28630356

RESUMEN

The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3ß at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

6.
Biotechnol Lett ; 38(4): 681-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26960415

RESUMEN

OBJECTIVES: A levansucrase from Leuconostoc mesenteroides NTM048 was cloned and expressed and its enzymatic product was characterized. RESULTS: The fructansucrase gene from Leuconostoc mesenteroides was cloned and expressed in Escherichia coli. The recombinant enzyme was purified as a single protein and its properties investigated. The polymer produced by the recombinant enzyme was identified as levan by various means including TLC and NMRs, and the enzyme was identified as a GH68 levansucrase. The enzyme was optimal at pH 5.5-6 and 30 °C, and its activity was stimulated by Ca(2+). The levan produced by this strain induced IgA production in mice. CONCLUSION: Leuconostoc mesenteroides, a probiotic strain, possessed levansucrase which catalyzed the produced levan that had immunomodulating activity.


Asunto(s)
Fructanos/biosíntesis , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Factores Inmunológicos/biosíntesis , Leuconostoc mesenteroides/enzimología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Calcio/metabolismo , Clonación Molecular , Escherichia coli/genética , Fructanos/farmacología , Inmunoglobulina A/metabolismo , Factores Inmunológicos/farmacología , Leuconostoc mesenteroides/genética , Ratones
7.
Arch Biochem Biophys ; 586: 10-9, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26427351

RESUMEN

The Chaperonins comprise a family of molecular chaperones having a double-ring structure and similar sequence homology. These proteins play an essential role in biological reactions that mediate the folding of newly synthesized polypeptides and partially denatured proteins. In the prokaryotic group I chaperonins, structural and reaction cycle analyses of GroEL and its co-chaperone GroES have been performed in detail. While in eukaryotes, there have been limited reports analyzing the group I chaperonin HSP60 and its co-chaperone HSP10. In the present study, we purified the wild type HSP60 from porcine liver and investigated the interaction between HSP60 and HSP10, including conformation and physiological relationships. Based on the results of transmission electron microscopy, native PAGE, and gel filtration column chromatography, the wild type HSP60 displayed a heptameric single-ring structure in the absence of ATP. In contrast, HSP60 formed mainly a "football-type" complex with HSP10 in the presence of ATP and mediated the refolding of denatured substrate protein. The functional conformation cycle of the purified mammalian HSP60 is distinct from the cycle of the prokaryotic GroEL/GroES chaperonin.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/fisiología , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/ultraestructura , Técnicas In Vitro , Cinética , Microscopía Electrónica de Transmisión , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Sus scrofa
8.
FEBS J ; 282(11): 2232-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25787021

RESUMEN

GM130 is a cytoplasmic peripheral membrane protein localized on the cis side of the Golgi apparatus. GM130 is proposed to function as a membrane skeleton, maintaining the structure of the Golgi apparatus, and as a vesicle tether that facilitates vesicle fusion to the Golgi membrane. More than 60% of the GM130 molecule is believed to exist as coiled-coil structures with a probability above 90%, based on its primary amino acid sequence. The predicted coiled-coil region was similar to that of yeast Uso1p and its mammalian homolog, p115, both of which form coiled-coil homodimers. Therefore, GM130 has long been thought to form a homodimer with a rod-like shape. However, our biochemical and electron microscopical analyses revealed that GM130 is a parallel homotetramer with a flexible rod-like structure with I- and Y-shaped conformations. The structure of the N-terminal region may interchange between an open conformation (branched or Y-shaped) and a closed conformation (non-branched or I-shaped), possibly with the help of interacting molecules. This conformational change may alter the oligomeric state of the GM130 molecules and the function of GM130 in the vesicle tethering and the maintenance of the Golgi structure.


Asunto(s)
Autoantígenos/química , Proteínas de la Membrana/química , Animales , Autoantígenos/ultraestructura , Humanos , Proteínas de la Membrana/ultraestructura , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas
9.
Exp Cell Res ; 328(2): 325-39, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25257606

RESUMEN

The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.


Asunto(s)
Transporte Biológico/fisiología , Citoplasma/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Línea Celular Tumoral , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica , Fosfolipasas A2/metabolismo
10.
Appl Microbiol Biotechnol ; 98(9): 4197-208, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24413921

RESUMEN

Green bottle flies occur frequently around human environments in Japan. Many species of green bottle flies have been studied with regard to their importance in forensic examinations or clinical therapies, but the bacterial communities associated with this group of flies have not been comprehensively investigated. In this research, 454 pyrosequencing was used to reveal the bacterial communities in green bottle flies collected in different seasons. Meanwhile, the bacteria were screened with selective media and tested for antibiotic susceptibility. Samples collected in three different seasons harbored distinctive bacterial communities. The predominant genera associated with green bottles flies were Staphylococcus in spring, Ignatzschineria in summer, and Vagococcus, Dysgonomonas, and an unclassified Acetobacteraceae in autumn. An upward trend in bacterial community diversity was observed from spring to autumn. Changes in climatic conditions could be the cause of these seasonal variations in fly-associated bacterial communities. The species of isolated antibiotic-resistant bacteria also differed across seasons, but it was difficult to correlate seasonal changes in antibiotic-resistant bacteria with changes in whole communities. A number of multiple-antibiotic-resistant bacteria were isolated, and some of these strains were closely affiliated with pathogens such as Enterococcus faecalis and Enterococcus faecium, which could cause serious threats to public health. Overall, this research provided us with information about the composition and seasonality of bacterial communities in green bottle flies, and highlighted the risks of fly-mediated dissemination of antibiotic-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biota , Dípteros/microbiología , Farmacorresistencia Bacteriana , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Japón , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estaciones del Año , Análisis de Secuencia de ADN
11.
Cell Struct Funct ; 36(2): 171-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21757827

RESUMEN

The Yip1 domain family (YIPF) proteins are homologues of yeast Yip1p and Yif1p, which are proposed to function in ER to Golgi transport. Here, we report the characterization of YIPF3 and YIPF4, homologues of human Yif1p and Yip1p, respectively. Immunofluorescence and immuno-electron microscopy showed that both YIPF3 and YIPF4 are clearly concentrated in the cis-Golgi. While YIPF4 was detected as a single mobility form consistent with its predicted molecular weight, three different mobility forms of YIPF3 were detected by western blotting. Biochemical and immunofluorescence experiments strongly indicated that YIPF3 is synthesized in the ER as a N-glycosylated form (40 kDa), is then O-glycosylated in the Golgi apparatus to become a lower mobility form (46 kDa) and finally becomes a higher mobility form cleaved at its C-terminal luminal domain (36 kDa). YIPF3 and YIPF4 form a complex in the Golgi apparatus, and this was suggested to be important for their proper localization and function. The knockdown of YIPF3 or YIPF4 in HeLa cells induced fragmentation of the Golgi apparatus, suggesting their involvement in the maintenance of the Golgi structure.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Glicosilación , Aparato de Golgi/química , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Life Sci ; 86(13-14): 499-504, 2010 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-20159025

RESUMEN

AIMS: With the advancement of small intestinal (double balloon and capsule) endoscopy technology, incidence of small intestinal lesion caused by nonsteroidal anti-inflammatory drugs (NSAIDs) has been known to be high. However, therapy for small intestinal mucosal lesion has not yet been developed. Previous studies have shown that heat shock proteins (HSPs) are involved in cytoprotection mediated by their function as a molecular chaperone. In this study, we examined the effect of HSP60 or HSP70 overexpression on hydrogen peroxide-induced (H2O2) or indomethacin-induced cell damage in the small intestinal epithelial cells. MAIN METHODS: cDNA of human HSP60 or HSP70 was transfected to rat small intestinal (IEC-6) cells, and HSP60- or HSP70-overexpressing cells were cloned. IEC-6 cells transfected with vector only were used as control cells. These cells were treated with H2O2 (0-0.14mM) or indomethacin (0-2.5mM). The cell viability was determined by MTT-assay. Cell necrosis was evaluated by LDH-release assay. Further, apoptosis was evaluated by caspases-3/7 activity and TUNEL assay. KEY FINDINGS: Cell viability after H2O2 or indomethacin treatment was significantly higher in HSP60-overexpressing cells compared with that in control cells and HSP60-overexpressing cells. Apoptotic cells were also reduced in HSP60-overexpressing. CONCLUSION: These results indicate that HSP60 plays an important role in protecting small intestinal mucosal cells from H2O2-induced or indomethacin-induced cell injury. HSP70-overexpressing cells did not show anti-apoptotic ability. SIGNIFICANCE: These findings possibly suggest that function of each HSP is different in the small intestine. Therefore, for the therapy of small intestinal mucosal lesion, HSP60-induction therapy could be a new therapeutic strategy.


Asunto(s)
Chaperonina 60/metabolismo , Células Epiteliales/metabolismo , Intestino Delgado/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Clonación Molecular , Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Intestino Delgado/lesiones , Ratas
13.
FEBS Lett ; 582(28): 3879-83, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-18955054

RESUMEN

The 90-kDa heat shock protein (HSP90) is a molecular chaperone that assists in the folding and assembly of proteins in the cytosol. We previously demonstrated that the antineoplastic reagent, cisplatin, inhibits the aggregation prevention activity of mammalian HSP90. We now show that cisplatin binds both the amino terminal and carboxyl terminal domains of the human HSP90 and differently affects these two domains. Cisplatin blocks the aggregation prevention activity of HSP90C, but not HSP90N. In contrast, cisplatin induces a conformational change in HSP90N, but not HSP90C. These results indicate that cisplatin modulates the HSP90 activities through two different mechanisms using the two distinct binding sites of the HSP90 molecule.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Proteínas HSP90 de Choque Térmico/efectos de los fármacos , Secuencias de Aminoácidos , Antineoplásicos/metabolismo , Sitios de Unión/efectos de los fármacos , Cisplatino/química , Proteínas HSP90 de Choque Térmico/química , Humanos , Estructura Terciaria de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...