Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2221508120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018204

RESUMEN

Soil-dwelling microbes are the principal inoculum for the root microbiota, but our understanding of microbe-microbe interactions in microbiota establishment remains fragmentary. We tested 39,204 binary interbacterial interactions for inhibitory activities in vitro, allowing us to identify taxonomic signatures in bacterial inhibition profiles. Using genetic and metabolomic approaches, we identified the antimicrobial 2,4-diacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites whose combined functions explain most of the inhibitory activity of the strongly antagonistic Pseudomonas brassicacearum R401. Microbiota reconstitution with a core of Arabidopsis thaliana root commensals in the presence of wild-type or mutant strains revealed a root niche-specific cofunction of these exometabolites as root competence determinants and drivers of predictable changes in the root-associated community. In natural environments, both the corresponding biosynthetic operons are enriched in roots, a pattern likely linked to their role as iron sinks, indicating that these cofunctioning exometabolites are adaptive traits contributing to pseudomonad pervasiveness throughout the root microbiota.


Asunto(s)
Arabidopsis , Microbiota , Bacterias/genética , Microbiota/genética , Simbiosis , Arabidopsis/genética , Interacciones Microbianas , Raíces de Plantas/genética , Microbiología del Suelo
2.
J Proteomics ; 155: 63-72, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28034645

RESUMEN

Protein acetylation, the reversible addition of an acetyl group to lysine residues, is a protein post-translational modification ubiquitous in living cells. Although the involvement of protein acetylation in the regulation of primary metabolism has been revealed, the function of protein acetylation is largely unknown in secondary metabolism. Here, we characterized protein acetylation in Streptomyces griseus, a streptomycin producer. Protein acetylation was induced in the stationary and sporulation phases in liquid and solid cultures, respectively, in S. griseus. By comprehensive acetylome analysis, we identified 134 acetylated proteins with 162 specific acetylated sites. Acetylation was found in proteins related to primary metabolism and translation, as in other bacteria. However, StrM, a deoxysugar epimerase involved in streptomycin biosynthesis, was identified as a highly acetylated protein by 2-DE-based proteomic analysis. The Lys70 residue, which is critical for the enzymatic activity of StrM, was the major acetylation site. Thus, acetylation of Lys70 was presumed to abolish enzymatic activity of StrM. In accordance with this notion, an S. griseus mutant producing the acetylation-mimic K70Q StrM hardly produced streptomycin, though the K70Q mutation apparently decreased the stability of StrM. A putative lysine acetyltransferase (KAT) SGR1683 in S. griseus, as well as the Escherichia coli KAT YfiQ, acetylated Lys70 of StrM in vitro. Furthermore, absolute quantification analysis estimated that 13% of StrM molecules were acetylated in mycelium grown in solid culture for 3days. These results indicate that StrM acetylation is of biological significance. We propose that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. BIOLOGICAL SIGNIFICANCE: Protein acetylation has been extensively studied not only in eukaryotes, but also in prokaryotes. The acetylome has been analyzed in more than 14 bacterial species. Here, by comprehensive acetylome analysis, we showed that acetylation was found in proteins related to primary metabolism and translation in Streptomyces griseus, similarly to other bacteria. However, five proteins involved in secondary metabolism were also identified as acetylated proteins; these proteins are enzymes in the biosynthesis of streptomycin (StrB1 and StrS), grixazone (GriF), a nonribosomal peptide (NRPS1-2), and a siderophore (AlcC). Additionally, StrM in streptomycin biosynthesis was identified as a highly acetylated protein by 2-DE-based proteomic analysis; approximately 13% of StrM molecules were acetylated. The acetylation occurs at Lys70 to abolish the enzymatic activity of StrM, suggesting that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. This is the first detailed analysis of protein acetylation of an enzyme involved in secondary metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptomyces griseus/metabolismo , Estreptomicina/biosíntesis , Acetilación
3.
J Proteome Res ; 6(6): 2315-22, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17489622

RESUMEN

We developed a novel protein chip made of a diamond-like, carbon-coated stainless steel plate (DLC plate), the surface of which is chemically modified with N-hydroxysuccinimide ester. To produce a high-density protein chip using the DLC plate, proteins separated by SDS gel electrophoresis or two-dimensional electrophoresis were electroblotted onto the DLC plate and immobilized covalently. A high blotting efficiency (25-70%) for transferring proteins from the gels onto the DLC plates was achieved by improvement of the electrophoresis device and electroblotting techniques. With the use of the DLC plate, we developed novel techniques to identify proteins immobilized on the chip and to detect protein-protein interactions on the chip by mass spectrometric analysis. We also developed a technique to identify post-translationally modified proteins, such as glycoproteins, on the protein chip.


Asunto(s)
Glicoproteínas/análisis , Análisis por Matrices de Proteínas/métodos , Proteínas/análisis , Proteómica/métodos , Acero Inoxidable/química , Animales , Carbono/química , Bovinos , Diamante/química , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Succinimidas/química , Propiedades de Superficie
4.
Mol Microbiol ; 62(6): 1534-46, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17083469

RESUMEN

Streptomyces coelicolor A3(2) retains unique conserved operons termed conservons. Here, one of the conservons (cvn9), which encodes five proteins (A9-E9), was characterized. Mutants for cvnA9 and cvnAlO conditionally overproduced actinorhodin and performed precocious aerial growth, while a cvnE9 mutant showed the parental phenotype. Transcription of bidG, adpA and bldN was upregulated in the cvnA9 mutant. A9-D9 were detected in the insoluble fraction of cell-free extract of S. coelicolor by Western analysis. Biochemical analyses revealed that A9 has ATP-hydrolysing and adenine nucleotide-binding activities; D9 has GTP-hydrolysing and guanine nucleotide-binding activities; and E9 shows a typical spectrum similar to cytochrome P450. The comprehensive interaction assays demonstrated the occurrence of specific interactions between A9 and B9, A9 and C9, B9 and B9, B9 and D9, and C9 and D9. A9 associated with and dissociated from B9 (and C9) when ATP and ATP-gamma-S were supplied in the reaction respectively. Similarly, D9 associated with and dissociated from B9 (and C9) when GTP and GTP-gamma-S were supplied respectively. A9 and B9 were also shown for the occurrence as homocomplexes. Probably, Cvn9 proteins comprise a membrane-associated heterocomplex resembling the eukaryotic G-protein-coupled receptor system, which may serve as a signal transducer that connects to the bld cascade.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP/metabolismo , Complejos Multiproteicos/metabolismo , Streptomyces coelicolor/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Complejos Multiproteicos/genética , Mutación , Operón , Fenotipo , Unión Proteica , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...