Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(15): 157404, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357061

RESUMEN

High harmonic generation in crystalline solids has been examined so far on the basis of one-body energy-band structures arising from electron itineracy in a periodic potential. Here, we show the emergence of high harmonic generation signals which are attributed to the dynamics of many-body states in a low-dimensional correlated electron system. An interacting fermion model and its effective pseudospin model on a one-dimensional dimer-type lattice are analyzed. Observed high harmonic generation signals in a spontaneously symmetry-broken state, where charge densities are polarized inside of dimer units, show threshold behavior with respect to light amplitude and are interpreted in terms of tunneling and recombination of kink-antikink excitations in an electric field.

2.
Phys Rev Lett ; 119(20): 207202, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29219363

RESUMEN

The double-exchange (DE) interaction, that is, a ferromagnetic (FM) interaction due to a combination of electron motion and the Hund coupling, is a well-known source of a wide class of FM orders. Here, we show that the DE interaction in highly photoexcited states is antiferromagnetic (AFM). Transient dynamics of quantum electrons coupled with classical spins are analyzed. An ac field applied to a metallic FM state results in an almost perfect Néel state. A time characterizing the FM-to-AFM conversion is scaled by light amplitude and frequency. This hidden AFM interaction is attributable to the electron-spin coupling under nonequilibrium electron distribution.

3.
Sci Rep ; 6: 20781, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876424

RESUMEN

The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials.

4.
Proc Natl Acad Sci U S A ; 112(30): 9305-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170280

RESUMEN

With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in FeSc2S4. To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state.

5.
Nat Commun ; 5: 5528, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25417749

RESUMEN

Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E(ω), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm(-1) instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene)(2)I(3). A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of t driven by the strong, high-frequency (ω ≧ t/h) electric field.

6.
J Phys Condens Matter ; 26(49): 493201, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25398158

RESUMEN

Electronic ferroelectricity in molecular organic crystals is reviewed from a theoretical perspective. In particular, we focus on the charge-driven-type electronic ferroelectricity where electronic charge order without inversion symmetry induces a spontaneous electric polarization in quarter-filling systems. Two necessary conditions to realize this type of ferroelectricity are the dimer-type lattice structure and alternate electronic charge alignments. Some prototypical organic compounds are introduced. In particular, κ-type BEDT-TTF organic salts, which are termed the dimer-Mott insulating systems, are focused on. Recent developments in the theoretical researches for dielectric and magnetodielectric properties, a collective dipole excitation and a possibility of superconductivity induced by polar charge fluctuation are reviewed. Some perspectives are presented.

7.
Phys Rev Lett ; 98(25): 256402, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17678040

RESUMEN

Interacting orbital degrees of freedom in a Mott insulator are essentially directional and frustrated. In this Letter, the effect of dilution in a quantum-orbital system with this kind of interaction is studied by analyzing a minimal orbital model which we call the two-dimensional quantum compass model. We find that the decrease of the ordering temperature due to dilution is stronger than that in spin models, but it is also much weaker than that of the classical model. The difference between the classical and the quantum-orbital systems arises from the enhancement of the effective dimensionality due to quantum fluctuations.

8.
Phys Rev Lett ; 94(15): 156408, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15904170

RESUMEN

A theory of doped perovskite vanadates with spin and orbital orders is presented. Mobile holes are strongly renormalized by spin excitations (magnons) in the spin G-type and orbital C-type (SG-OC) order, and orbital excitations (orbitons) in the spin C-type and orbital G-type (SC-OG) one. Hole dynamics in a staggered t(2g) orbital array is distinguished from that in the antiferromagnetic order and the e(g) orbital one. The fragile character of the (SG-OC) order in Y1-xCaxVO3 is attributed to the orbiton softening induced by a reduction of the spin order parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA