Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(7): 986-998, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058471

RESUMEN

Insulin resistance and hyperglycemia are risk factors for periodontitis and poor wound healing in diabetes, which have been associated with selective loss of insulin activation of the PI3K/Akt pathway in the gingiva. This study showed that insulin resistance in the mouse gingiva due to selective deletion of smooth muscle and fibroblast insulin receptor (SMIRKO mice) or systemic metabolic changes induced by a high-fat diet (HFD) in HFD-fed mice exacerbated periodontitis-induced alveolar bone loss, preceded by delayed neutrophil and monocyte recruitment and impaired bacterial clearance compared with their respective controls. The immunocytokines, CXCL1, CXCL2, MCP-1, TNFα, IL-1ß, and IL-17A, exhibited delayed maximal expression in the gingiva of male SMIRKO and HFD-fed mice compared with controls. Targeted overexpression of CXCL1 in the gingiva by adenovirus normalized neutrophil and monocyte recruitment and prevented bone loss in both mouse models of insulin resistance. Mechanistically, insulin enhanced bacterial lipopolysaccharide-induced CXCL1 production in mouse and human gingival fibroblasts (GFs), via Akt pathway and NF-κB activation, which were reduced in GFs from SMIRKO and HFD-fed mice. These results provided the first report that insulin signaling can enhance endotoxin-induced CXCL1 expression to modulate neutrophil recruitment, suggesting CXCL1 as a new therapeutic direction for periodontitis or wound healing in diabetes. ARTICLE HIGHLIGHTS: The mechanism for the increased risks for periodontitis in the gingival tissues due to insulin resistance and diabetes is unclear. We investigated how insulin action in gingival fibroblasts modulates the progression of periodontitis in resistance and diabetes. Insulin upregulated the lipopolysaccharide-induced neutrophil chemoattractant, CXCL1, production in gingival fibroblasts via insulin receptors and Akt activation. Enhancing CXCL1 expression in the gingiva normalized diabetes and insulin resistance-induced delays in neutrophils recruitment and periodontitis. Targeting dysregulation of CXCL1 in fibroblasts is potentially therapeutic for periodontitis and may also improve wound healing in insulin resistance and diabetes.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Insulinas , Periodontitis , Animales , Humanos , Masculino , Ratones , Quimiocina CXCL1 , Resistencia a la Insulina/genética , Insulinas/uso terapéutico , Lipopolisacáridos , Infiltración Neutrófila , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
2.
PLoS One ; 17(9): e0274465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36103495

RESUMEN

BACKGROUND: Tooth loss is associated with nutritional status and significantly affects quality of life, particularly in older individuals. To date, several studies reveal that a high BMI is associated with tooth loss. However, there is a lack of large-scale studies that examined the impact of obesity on residual teeth with respect to age and tooth positions. OBJECTIVE: We assessed the impact of obesity on the number and position of residual teeth by age groups using large scale of Japanese database. METHODS: This was a cross-sectional study of 706150 subjects that were included in the database that combined the data from health insurance claims and health check-up, those lacking information about BMI, HbA1c level, smoking status, and the number of residual teeth were excluded. Thus, a total of 233517 aged 20-74 years were included. Subjects were classified into 4 categories based on BMI, and the number of teeth was compared between age-groups. The percentage of subjects with residual teeth in each position was compared between groups with obesity (BMI ≥25.0 kg/m2) and non-obesity. Logistic regression analysis was performed to clarify whether obesity predicts having <24 teeth. RESULTS: Higher BMI was associated with fewer teeth over 40s (P for trend <0.0001 when <70s). Obesity was associated with the reduction of residual teeth in the maxillary; specifically, the molars were affected over the age 30. Smoking status further affected tooth loss at positions that were not affected by obesity alone. After adjusting for age, sex, smoking status, and HbA1c ≥6.5%, obesity remained an independent predictive factor for having <24 teeth (ORs: 1.35, 95% CIs: 1.30-1.40). CONCLUSIONS: We found that an increase in BMI was associated with a decrease in the number of residual teeth from younger ages independently of smoking status and diabetes in the large scale of Japanese database.


Asunto(s)
Pérdida de Diente , Adulto , Anciano , Estudios Transversales , Hemoglobina Glucada , Humanos , Japón/epidemiología , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Calidad de Vida , Pérdida de Diente/complicaciones , Pérdida de Diente/epidemiología , Adulto Joven
3.
PLoS One ; 17(2): e0263254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35148358

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory bone destruction in which tumor necrosis factor alpha (TNF-α) plays a key role. Bovine lactoferrin (bLF) is a multifunctional protein with anti-inflammatory and immunomodulatory properties. This study aimed to clarify the inhibitory effects of bLF on the pathological progression of RA. The mannan-induced arthritis model in SKG mice (genetic RA model) was used. Orally applied liposomal bLF (LbLF) markedly reduced ankle joint swelling and bone destruction. Histologically, pannus formation and osteoclastic bone destruction were prevented in the LbLF-treated animals. Moreover, orally administered LbLF improved the balance between Th17 cells and regulatory T cells isolated from the spleen of mannan-treated SKG mice. In an in vitro study, the anti-inflammatory effects of bLF on TNF-α-induced TNF-α production and downstream signaling pathways were analyzed in human synovial fibroblasts from RA patients (RASFs). bLF suppressed TNF-α production from RASFs by inhibiting the nuclear factor kappa B and mitogen-activated protein kinase pathways. The intracellular accumulation of bLF in RASFs increased in an applied bLF dose-dependent manner. Knockdown of the lipoprotein receptor-related protein-1 (LRP1) siRNA gene reduced bLF expression in RASFs, indicating that exogenously applied bLF was mainly internalized through LRP-1. Immunoprecipitated proteins with anti-TNF receptor-associated factor 2 (TRAF2; an adapter protein/ubiquitin ligase) included bLF, indicating that bLF binds directly to the TRAF2-TRADD-RIP complex. This indicates that LbLF may effectively prevent the pathological progression of RA by suppressing TNF-α production by binding to the TRAF2-TRADD-RIP complex from the RASFs in the pannus. Therefore, supplemental administration of LbLF may have a beneficial effect on preventive/therapeutic reagents for RA.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Lactoferrina/administración & dosificación , Osteogénesis/efectos de los fármacos , Membrana Sinovial/citología , Factor de Necrosis Tumoral alfa/efectos adversos , Administración Oral , Animales , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Lactoferrina/farmacología , Masculino , Ratones , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Células Th17/metabolismo
4.
Diabetol Int ; 13(1): 244-252, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35059260

RESUMEN

AIM: Diabetes mellitus is a well-known risk factor for onset and progression of periodontal disease. However, the continuous relationship between glycemic control and the number of natural teeth has not been well characterized in large-scale studies. We aimed to determine whether the glycated hemoglobin A1c (HbA1c) level and fasting plasma glucose (FPG) are associated with the number of natural teeth. METHODS: A cross-sectional study: A database comprising employment-based health insurance claim and medical check-up data from 706,150 participants between April 2015 and March 2016 in Japan. The exclusion criteria included missing data regarding dental receipts, number of natural teeth, HbA1c, smoking status, and age < 20 years. Ultimately, 233,567 individuals were analyzed. The participants were allocated to five groups according to their HbA1c and three groups according to their FPG, and then the number of natural teeth were compared. RESULTS: Higher HbA1c was associated with fewer teeth in participants ≥ 30 years of age (P for trend < 0.001). Higher FPG was associated with fewer teeth between 30 and 69 years of age (P for trend < 0.001). Participants with impaired fasting glucose was already at risk for fewer teeth between 40 and 69 years of age than those with normal FPG. CONCLUSIONS: Glycemic control is strongly associated with the number of natural teeth in the real-world setting. Furthermore, there are continuous relationships of HbA1c and FPG with number of natural teeth including individual with impaired fasting glucose. These data emphasize the importance of glycemic control and appropriate oral care for the protection against tooth loss. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13340-021-00533-2.

5.
J Oral Biosci ; 62(2): 147-154, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32464258

RESUMEN

OBJECTIVES: Lactoferrin (LF) possesses diverse biological functions. We previously reported that bovine LF (bLF) attenuates lipopolysaccharide-induced bone resorption in osteoblasts. In addition to its ability to inhibit osteoclastogenesis, bLF has been implicated in stimulating bone formation. However, the molecular mechanisms of bLF in bone cell anabolism remain unclear. Here, we tried to analyse the molecular mechanisms involved in osteogenesis in the presence of bLF. METHODS: Alkaline phosphatase activity, Runx2 activity, gene expression, and Alizarin red staining were analyzed to evaluate the osteogenic differentiation status. The expression of the Smads and mitogen-activated protein kinase (MAPK) signaling molecules was analyzed via western blotting. Ex vivo organ cultures of mouse calvariae were performed to evaluate the effect of bLF on bone regeneration. RESULTS: bLF enhanced the osteoblastic differentiation of mesenchymal stem cells through activation of Smad2/3 and p38 MAPK, which increased the transcriptional activity of Runx2. bLF treatment also enhanced osteoblastic differentiation and mineralized nodule formation of osteoblast-lineage cells, and repaired bone defects ex vivo. Moreover, inhibition of Smad2/3 or p38 MAPK signaling reduced the anabolic effects of bLF. Together, these results suggested that bLF is a potent osteogenic factor, which mediates its function via activation of the Smad2/3 and p38 MAPK signaling pathways. CONCLUSIONS: Here, we described a novel function of bLF and its signal transduction mechanisms in osseous tissue. Along with inhibiting osteoclastogenesis, bLF may limit further osteoclast formation and contribute to bone mass enlargement. Thus, bLF represents a potentially valuable therapeutic agent for bone regeneration and destructive bone diseases.


Asunto(s)
Lactoferrina , Osteogénesis , Animales , Diferenciación Celular , Ratones , Osteoblastos , Osteoclastos , Proteína Smad2 , Proteína smad3 , Proteínas Quinasas p38 Activadas por Mitógenos
6.
Nat Commun ; 10(1): 4427, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562314

RESUMEN

Insulin and IGF-1 actions in vascular smooth muscle cells (VSMC) are associated with accelerated arterial intima hyperplasia and restenosis after angioplasty, especially in diabetes. To distinguish their relative roles, we delete insulin receptor (SMIRKO) or IGF-1 receptor (SMIGF1RKO) in VSMC and in mice. Here we report that intima hyperplasia is attenuated in SMIRKO mice, but not in SMIGF1RKO mice. In VSMC, deleting IGF1R increases homodimers of IR, enhances insulin binding, stimulates p-Akt and proliferation, but deleting IR decreases responses to insulin and IGF-1. Studies using chimeras of IR(extracellular domain)/IGF1R(intracellular-domain) or IGF1R(extracellular domain)/IR(intracellular-domain) demonstrate homodimer IRα enhances insulin binding and signaling which is inhibited by IGF1Rα. RNA-seq identifies hyaluronan synthase2 as a target of homo-IR, with its expression increases by IR activation in SMIGF1RKO mice and decreases in SMIRKO mice. Enhanced intima hyperplasia in diabetes is mainly due to insulin signaling via homo-IR, associated with increased Has2 expression.


Asunto(s)
Diabetes Mellitus/metabolismo , Hiperplasia/metabolismo , Resistencia a la Insulina/fisiología , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Modelos Animales de Enfermedad , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Homocigoto , Hialuronano Sintasas/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Transducción de Señal
7.
Sci Transl Med ; 11(499)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270273

RESUMEN

The Joslin Medalist Study characterized people affected with type 1 diabetes for 50 years or longer. More than 35% of these individuals exhibit no to mild diabetic retinopathy (DR), independent of glycemic control, suggesting the presence of endogenous protective factors against DR in a subpopulation of patients. Proteomic analysis of retina and vitreous identified retinol binding protein 3 (RBP3), a retinol transport protein secreted mainly by the photoreceptors, as elevated in Medalist patients protected from advanced DR. Mass spectrometry and protein expression analysis identified an inverse association between vitreous RBP3 concentration and DR severity. Intravitreal injection and photoreceptor-specific overexpression of RBP3 in rodents inhibited the detrimental effects of vascular endothelial growth factor (VEGF). Mechanistically, our results showed that recombinant RBP3 exerted the therapeutic effects by binding and inhibiting VEGF receptor tyrosine phosphorylation. In addition, by binding to glucose transporter 1 (GLUT1) and decreasing glucose uptake, RBP3 blocked the detrimental effects of hyperglycemia in inducing inflammatory cytokines in retinal endothelial and Müller cells. Elevated expression of photoreceptor-secreted RBP3 may have a role in protection against the progression of DR due to hyperglycemia by inhibiting glucose uptake via GLUT1 and decreasing the expression of inflammatory cytokines and VEGF.


Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Proteínas del Ojo/metabolismo , Retina/metabolismo , Retina/patología , Proteínas de Unión al Retinol/metabolismo , 3-O-Metilglucosa/metabolismo , Ácidos/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Desoxiglucosa/metabolismo , Diabetes Mellitus/fisiopatología , Retinopatía Diabética/fisiopatología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Proteínas del Ojo/administración & dosificación , Proteínas del Ojo/sangre , Proteínas del Ojo/química , Glucólisis/efectos de los fármacos , Humanos , Inyecciones Intravítreas , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Sustancias Protectoras/farmacología , Dominios Proteicos , Ratas Endogámicas Lew , Proteínas Recombinantes/farmacología , Reproducibilidad de los Resultados , Retina/fisiopatología , Proteínas de Unión al Retinol/administración & dosificación , Proteínas de Unión al Retinol/química , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo
8.
J Periodontol ; 90(6): 565-575, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026349

RESUMEN

BACKGROUND: Periodontitis is more common and severe in people with diabetes than the general population. We have reported in the Joslin Medalist Study that people with type 1 diabetes of ≥50 years (Medalists) may have endogenous protective factors against diabetic nephropathy and retinopathy. METHODS: In this cross-sectional study, the prevalence of periodontitis according to the Centers for Disease Control/American Academy of Periodontology classification in a subset (n = 170, mean age = 64.6 ± 6.9 years) of the Medalist cohort, and its associations to various criteria of periodontitis and diabetic complications were assessed. RESULTS: The prevalence of severe periodontitis in Medalists was only 13.5% which was lower than reported levels in diabetic patients of similar ages. Periodontal parameters, including bleeding on probing, plaque index, gingival index, and demographic traits, including male sex, chronological age, and age at diagnosis were significantly associated with severity of periodontitis, which did not associate with diabetes duration, hemoglobin A1c (HbA1c), body mass index, and lipid profiles. Random serum C-peptide levels inversely associated with severity of periodontitis (P = 0.03), lower probing depth (P = 0.0002), and clinical attachment loss (P = 0.03). Prevalence of cardiovascular diseases (CVD) and systemic inflammatory markers, plasma interleukin-6 (IL-6), and serum immunoglobulin G titer against Porphyromonas gingivalis positively associated with severity of periodontitis (P = 0.002 and 0.02, respectively). Antibody titer to P. gingivalis correlated positively and significantly with CVD, serum IL-6, and high-sensitivity C-reactive protein. CONCLUSIONS: Some Medalists could be protected from severe periodontitis even with hyperglycemia. Endogenous protective factors for periodontitis could possibly be related to residual insulin production and lower levels of chronic inflammation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Periodontitis , Anciano , Estudios Transversales , Índice de Placa Dental , Hemoglobina Glucada , Humanos , Masculino , Persona de Mediana Edad , Pérdida de la Inserción Periodontal
9.
Nutrients ; 11(4)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925824

RESUMEN

The anti-hypertensive effect of processed rice bran (PRB) was recently reported, for which the novel peptide Leu-Arg-Ala (LRA) was identified as the functional substance. The purpose of this study was to assess the anti-hypertensive effects of a rice bran supplement containing PRB in individuals with high-normal blood pressure (systolic blood pressure (SBP): 130⁻139 mmHg and/or diastolic blood pressure (DBP): 85⁻89 mmHg) or grade 1 hypertension (SBP: 140⁻159 mmHg and/or DBP: 90⁻99 mmHg). One hundred individuals with high-normal blood pressure or grade 1 hypertension were recruited to participate in this double-blind, randomized, placebo-controlled study. Participants were randomly allocated to the placebo group (n = 50) or the test group (n = 50). Each group took four test tablets (43 µg LRA/day) or four placebo tablets daily. The decrease in blood pressure in the test group compared with the placebo group was the primary outcome. Adverse events were recorded and hematological/urinary parameters measured to determine the safety of the supplement, which was the secondary outcome. In total, 87 participants completed the study. The SBP of the test group at 12 weeks was significantly lower than that of the placebo group (p = 0.0497). No serious adverse events were observed. Daily consumption of a rice bran supplement containing PRB can safely improve mildly elevated blood pressure.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos , Hipertensión/tratamiento farmacológico , Oryza/química , Péptidos/farmacología , Proteínas de Plantas/farmacología , Método Doble Ciego , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Péptidos/química , Proteínas de Plantas/química
10.
J Agric Food Chem ; 67(5): 1437-1442, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30609899

RESUMEN

We recently identified a novel, potent antihypertensive peptide, Leu-Arg-Ala (LRA; minimum effective dose = 0.25 mg/kg), from rice bran protein. In this study, we found that LRA potently relaxed mesenteric arteries isolated from spontaneously hypertensive rats (SHRs) (EC50 = 0.1 µM). In contrast, the vasorelaxant activity of each amino acid that constitutes the LRA tripeptide was remarkably attenuated. The LRA-induced vasorelaxant activity was inhibited by N(G)-nitro-l-arginine methyl ester (L-NAME; NO synthase [NOS] inhibitor) but not by an antagonist of bradykinin B2 and Mas receptors or by a phosphoinositide 3-kinase inhibitor. The antihypertensive effect induced after the oral administration of LRA was inhibited by L-NAME. LRA also induced the phosphorylation of endothelial NOS in human umbilical vein endothelial cells. Taken together, LRA may exhibit antihypertensive effects via NO-mediated vasorelaxation. LRA is the first example of a NO-dependent vasorelaxant peptide identified from rice bran protein.


Asunto(s)
Antihipertensivos/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Óxido Nítrico/metabolismo , Oligopéptidos/administración & dosificación , Oryza/química , Extractos Vegetales/administración & dosificación , Vasodilatadores/administración & dosificación , Animales , Antihipertensivos/aislamiento & purificación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Oligopéptidos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Endogámicas SHR , Semillas/química , Vasodilatación/efectos de los fármacos , Vasodilatadores/aislamiento & purificación
11.
Nutrients ; 10(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617350

RESUMEN

The regular consumption of soy products is associated with inverse incidence of type 2 diabetes, and there has been an increasing interest in the glycemia reducing potential of rice bran and its components. In this study, we investigated whether consuming soymilk with the addition of rice bran (fiber) can reduce the glycemic response of a carbohydrate meal. Seventeen healthy Asian men (BMI: 18.5-29 kg/m²) participated in this randomized crossover trial. On four occasions, they consumed white bread (two times) and white bread with two different soymilks differing in protein and rice bran content. Blood samples were taken to measure glucose and insulin response over a period of 3 hours. Taking the glycemic index (GI) value of white bread as a reference value of 100, the GI of white bread when co-ingested with rice bran soymilk (RBS) was 83.1 (±7.7) and sugar-free soymilk (SFS) was 77.5 (±10.1), both were lower than white bread (p < 0.05). The insulin response of both soymilk treatments was similar to white bread (p > 0.05). The glucose/insulin ratio of RBS and SFS were respectively 43.1 (± 6.1) and 60.0 (± 17.0) and were lower (p < 0.05) than white bread (123.5 ± 21.1) during the first 30 min. In conclusion, co-ingestion of low amounts of soy protein with a carbohydrate meal stimulated early-phase insulin secretion and thereby increased blood glucose clearance effectiveness. Furthermore, rice bran-fortified soymilk reduced the glycemic response similarly to soymilk with a greater dose of soy protein. Rice bran and its components offer therapeutic potential for glycemic and insulinemic control.


Asunto(s)
Glucemia/metabolismo , Pan , Fibras de la Dieta/administración & dosificación , Ingestión de Alimentos , Alimentos Fortificados , Insulina/sangre , Oryza , Semillas , Leche de Soja/administración & dosificación , Adulto , Biomarcadores/sangre , Pan/efectos adversos , Estudios Cruzados , Fibras de la Dieta/efectos adversos , Alimentos Fortificados/efectos adversos , Índice Glucémico , Humanos , Masculino , Periodo Posprandial , Singapur , Método Simple Ciego , Factores de Tiempo , Adulto Joven
12.
Biochem Biophys Res Commun ; 495(2): 2098-2104, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29253568

RESUMEN

O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Esfuerzo Físico/fisiología , Acilación/fisiología , Animales , Glucemia/metabolismo , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Noqueados , Condicionamiento Físico Animal/métodos
13.
Mol Nutr Food Res ; 62(4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29281178

RESUMEN

SCOPE: Hypertension is a risk factor for arteriosclerosis. In this study, we investigate the antihypertensive effect of protease-digested rice bran in a spontaneously hypertension rat (SHR) model. We also purify a novel antihypertensive peptide from the digest. METHODS AND RESULTS: Thermolysin-digested rice bran (TRB) is administered to SHRs for 4 weeks, and systolic blood pressure (SBP) was measured weekly using the tail-cuff method. TRB shows an antihypertensive effect in a dose-dependent manner. TRB also reduces angiotensin I-converting enzyme (ACE) activity in lung tissue and serum troponin I levels. TRB is fractionated by HPLC and ACE-inhibitory activity in the HPLC fractions is measured. Peptides LRA and YY are identified from the two fractions with the strongest ACE-inhibitory activity. Amino acid sequence of these peptides are found in a vicilin-like seed storage protein, and identified in rice bran protein using the peptide mass fingerprint method. We confirm that LRA and YY are cleaved by thermolysin digestion of a model synthetic peptide. Orally administered LRA (0.25 mg kg-1 ) or YY (0.5 mg kg-1 ) lowers the SBP of SHRs at 4 h after administration. CONCLUSION: We identify a novel, orally active antihypertensive peptide, LRA from the digest of rice bran protein.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Antihipertensivos/aislamiento & purificación , Oryza/química , Péptidos/aislamiento & purificación , Termolisina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antihipertensivos/farmacología , Masculino , Péptidos/farmacología , Ratas , Ratas Endogámicas SHR
14.
PLoS One ; 12(6): e0179869, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662074

RESUMEN

BACKGROUND & AIMS: A fiber-rich diet has a cardioprotective effect, but the mechanism for this remains unclear. We hypothesized that a fiber-rich diet with brown rice improves endothelial function in patients with type 2 diabetes mellitus. METHODS: Twenty-eight patients with type 2 diabetes mellitus at a single general hospital in Japan were randomly assigned to a brown rice (n = 14) or white rice (n = 14) diet and were followed for 8 weeks. The primary outcome was changes in endothelial function determined from flow debt repayment by reactive hyperemia using strain-gauge plethysmography in the fasting state. Secondary outcomes were changes in HbA1c, postprandial glucose excursions, and markers of oxidative stress and inflammation. The area under the curve for glucose after ingesting 250 kcal of assigned rice was compared between baseline (T0) and at the end of the intervention (T1) to estimate glucose excursions in each group. RESULTS: Improvement in endothelial function, assessed by fasting flow debt repayment (20.4% vs. -5.8%, p = 0.004), was significantly greater in the brown rice diet group than the white rice diet group, although the between-group difference in change of fiber intake was small (5.6 g/day vs. -1.2 g/day, p<0.0001). Changes in total, HDL-, and LDL-cholesterol, and urine 8-isoprostane levels did not differ between the two groups. The high-sensitivity C-reactive protein level tended to improve in the brown rice diet group compared with the white rice diet group (0.01 µg/L vs. -0.04 µg/L, p = 0.063). The area under the curve for glucose was subtly but consistently lower in the brown rice diet group (T0: 21.4 mmol/L*h vs. 24.0 mmol/L*h, p = 0.043, T1: 20.4 mmol/L*h vs. 23.3 mmol/L*h, p = 0.046) without changes in HbA1c. CONCLUSIONS: Intervention with a fiber-rich diet with brown rice effectively improved endothelial function, without changes in HbA1c levels, possibly through reducing glucose excursions.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Fibras de la Dieta , Endotelio Vascular/fisiopatología , Oryza , Anciano , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad
15.
Nat Med ; 23(6): 753-762, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28436957

RESUMEN

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (l50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.


Asunto(s)
Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Podocitos/metabolismo , Piruvato Quinasa/genética , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Línea Celular , Diabetes Mellitus Experimental , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Riñón/metabolismo , Glomérulos Renales/metabolismo , Masculino , Metabolómica , Ratones , Ratones Noqueados , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/genética , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteómica , Piruvato Quinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Nutrients ; 7(9): 8112-26, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26402697

RESUMEN

N-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have protective effects against atherosclerosis. Monocyte chemotactic protein (MCP)-1 is a major inflammatory mediator in the progression of atherosclerosis. However, little is known about the regulation of MCP-1 by DHA and EPA in vessels and vascular smooth muscle cells (VSMCs). In this study, we compared the effect of DHA and EPA on the expression of Mcp-1 in rat arterial strips and rat VSMCs. DHA, but not EPA, suppressed Mcp-1 expression in arterial strips. Furthermore, DHA generated 4-hydroxy hexenal (4-HHE), an end product of n-3 polyunsaturated fatty acids (PUFAs), in arterial strips as measured by liquid chromatography-tandem mass spectrometry. In addition, 4-HHE treatment suppressed Mcp-1 expression in arterial strips, suggesting 4-HHE derived from DHA may be involved in the mechanism of this phenomenon. In contrast, Mcp-1 expression was stimulated by DHA, EPA and 4-HHE through p38 kinase and the Keap1-Nuclear factor erythroid-derived 2-like 2 (Nrf2) pathway in VSMCs. In conclusion, there is a dual effect of n-3 PUFAs on the regulation of Mcp-1 expression. Further study is necessary to elucidate the pathological role of this phenomenon.


Asunto(s)
Aldehídos/metabolismo , Quimiocina CCL2/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Técnicas In Vitro , Masculino , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Nutr Res ; 34(6): 491-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25026916

RESUMEN

Periodontal disease is related to aging, smoking habits, diabetes mellitus, and systemic inflammation. However, there remains limited evidence about causality from intervention studies. An effective diet for prevention of periodontal disease has not been well established. The current study was an intervention study examining the effects of a high-fiber, low-fat diet on periodontal disease markers in high-risk subjects. Forty-seven volunteers were interviewed for recruitment into the study. Twenty-one volunteers with a body mass index of at least 25.0 kg/m(2) or with impaired glucose tolerance were enrolled in the study. After a 2- to 3-week run-in period, subjects were provided with a test meal consisting of high fiber and low fat (30 kcal/kg of ideal body weight) 3 times a day for 8 weeks and followed by a regular diet for 24 weeks. Four hundred twenty-five teeth from 17 subjects were analyzed. Periodontal disease markers assessed as probing depth (2.28 vs 2.21 vs 2.13 mm; P < .0001), clinical attachment loss (6.11 vs 6.06 vs 5.98 mm; P < .0001), and bleeding on probing (16.2 vs 13.2 vs 14.6 %; P = .005) showed significant reductions after the test-meal period, and these improvements persisted until the follow-up period. Body weight (P < .0001), HbA1c (P < .0001), and high-sensitivity C-reactive protein (P = .038) levels showed improvement after the test-meal period; they returned to baseline levels after the follow-up period. In conclusion, treatment with a high-fiber, low-fat diet for 8 weeks effectively improved periodontal disease markers as well as metabolic profiles, at least in part, by effects other than the reduction of total energy intake.


Asunto(s)
Biomarcadores/sangre , Dieta con Restricción de Grasas , Fibras de la Dieta/administración & dosificación , Enfermedades Periodontales/sangre , Enfermedades Periodontales/dietoterapia , Adulto , Glucemia/metabolismo , Índice de Masa Corporal , Peso Corporal , Proteína C-Reactiva/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Conducta Alimentaria , Femenino , Intolerancia a la Glucosa , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Proyectos Piloto , Triglicéridos/sangre , Circunferencia de la Cintura
18.
Metabolism ; 63(7): 930-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24850465

RESUMEN

OBJECTIVE: The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). MATERIALS/METHODS: Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs ≧ 3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). RESULTS: A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. CONCLUSIONS: A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon.


Asunto(s)
Envejecimiento , Aterosclerosis/prevención & control , Diabetes Mellitus Tipo 2/dietoterapia , Angiopatías Diabéticas/prevención & control , Endotelio Vascular/fisiopatología , Peces , Alimentos Marinos , Anciano , Animales , Aterosclerosis/complicaciones , Estudios de Cohortes , Estudios Cruzados , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Registros de Dieta , Grasas de la Dieta/análisis , Grasas de la Dieta/sangre , Grasas de la Dieta/metabolismo , Grasas de la Dieta/uso terapéutico , Eicosanoides/sangre , Eicosanoides/metabolismo , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Humanos , Japón , Persona de Mediana Edad , Posmenopausia , Alimentos Marinos/análisis
19.
Biochem Biophys Res Commun ; 443(3): 991-6, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24361890

RESUMEN

It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo. In this study, we examined the effect of fish-oil dietary supplementation on the distribution of fatty acids and their peroxidative metabolites and on the expression of HO-1 in multiple tissues (liver, kidney, heart, lung, spleen, intestine, skeletal muscle, white adipose, brown adipose, brain, aorta, and plasma) of C57BL/6 mice. Mice were divided into 4 groups, and fed a control, safflower-oil, and fish-oil diet for 3 weeks. One group was fed a fish-oil diet for just 1 week. The concentration of fatty acids, 4-hydroxy hexenal (4-HHE), and 4-hydroxy nonenal (4-HNE), and the expression of HO-1 mRNA were measured in the same tissues. We found that the concentration of 4-HHE (a product of n-3 PUFAs peroxidation) and expression of HO-1 mRNA were significantly increased after fish-oil treatment in most tissues. In addition, these increases were paralleled by an increase in the level of docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) in each tissue. These results are consistent with our previous results showing that DHA induces HO-1 expression through 4-HHE in vascular endothelial cells. In conclusion, we hypothesize that the HO-1-mediated protective effect of the fish oil diet may be through production of 4-HHE from DHA but not EPA in various tissues.


Asunto(s)
Aldehídos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hemo-Oxigenasa 1/biosíntesis , Especificidad de Órganos , Aldehídos/sangre , Animales , Ácido Araquidónico/sangre , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Inducción Enzimática , Ácidos Grasos Omega-3/sangre , Hemo-Oxigenasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
PLoS One ; 8(7): e69415, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936010

RESUMEN

Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2(-/-) mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2(-/-) mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.


Asunto(s)
Aldehídos/farmacología , Citoprotección/efectos de los fármacos , Ácidos Docosahexaenoicos/química , Células Endoteliales/citología , Células Endoteliales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aldehídos/metabolismo , Animales , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/fisiología , Peso Corporal/efectos de los fármacos , Daño del ADN , Dieta , Ácido Eicosapentaenoico/química , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1 , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...