Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 59(24): 17970-17980, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33264565

RESUMEN

The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3̅m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.

2.
Sci Rep ; 9(1): 1826, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755692

RESUMEN

Molecular based spin-1/2 triangular lattice systems such as LiZn2Mo3O8 have attracted research interest. Distortions, defects, and intersite disorder are suppressed in such molecular-based magnets, and intrinsic geometrical frustration gives rise to unconventional and unexpected ground states. Li2AMo3O8 (A = In or Sc) is such a compound where spin-1/2 Mo3O13 clusters in place of Mo ions form the uniform triangular lattice. Their ground states are different according to the A site. Li2InMo3O8 undergoes conventional 120° long-range magnetic order below TN = 12 K whereas isomorphic Li2ScMo3O8 exhibits no long-range magnetic order down to 0.5 K. Here, we report exotic magnetisms in Li2InMo3O8 and Li2ScMo3O8 investigated by muon spin rotation (µSR) and inelastic neutron scattering (INS) spectroscopies using polycrystalline samples. Li2InMo3O8 and Li2ScMo3O8 show completely different behaviors observed in both µSR and INS measurements, representing their different ground states. Li2InMo3O8 exhibits spin wave excitation which is quantitatively described by the nearest neighbor anisotropic Heisenberg model based on the 120° spin structure. In contrast, Li2ScMo3O8 undergoes short-range magnetic order below 4 K with quantum-spin-liquid-like magnetic fluctuations down to the base temperature. Origin of the different ground states is discussed in terms of anisotropies of crystal structures and magnetic interactions.

3.
Sci Rep ; 8(1): 16343, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397220

RESUMEN

Spin fluctuations are widely believed to play an important role in the superconducting mechanisms of unconventional high temperature superconductors. Spin fluctuations have been observed in iron-based superconductors as well. However, in some iron-based superconductors such as LaFePO0.9, they have not been observed by inelastic neutron scattering (INS). LaFePO0.9 is an iron-based superconductor with a low superconducting transition temperature (Tc = 5 K), where line nodes are observed in the superconducting gap function. The line-node symmetry typically originates from sign reversal of the order parameter in spin-fluctuation-mediated superconductivity. This contradiction has been a long-standing mystery of this superconductor. Herein, spin fluctuations were found at high energies such as 30-50 meV with comparable intensities to an optimally doped LaFeAs(O, F). Based on this finding, the line-node symmetry can be explained naturally as spin-fluctuation-mediated superconductivity.

4.
Nat Mater ; 14(1): 37-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362356

RESUMEN

In the high-temperature (T(c)) cuprate superconductors, a growing body of evidence suggests that the pseudogap phase, existing below the pseudogap temperature T*, is characterized by some broken electronic symmetries distinct from those associated with superconductivity. In particular, recent scattering experiments have suggested that charge ordering competes with superconductivity. However, no direct link of an interplay between the two phases has been identified from the important low-energy excitations. Here, we report an antagonistic singularity at T(c) in the spectral weight of Bi2Sr2CaCu2O(8+δ) as compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with theoretical calculations confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two orders and the complex phase diagram near the pseudogap critical point.

5.
IUCrJ ; 1(Pt 3): 155-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25075333

RESUMEN

Understanding the nature of superconductivity in iron-based compounds is essential in the development of new strategies to increase T c. Using a charge density analysis based on synchrotron radiation X-ray powder diffraction data, we found that the charge carriers only accumulated in the iron layer of the superconducting phase of LaFeAsO1 - x F x at low temperatures. Analysis of the electrostatic potential distribution revealed the concerted enhancement of the electronic polarization of the As ions and the carrier redistribution. This suggests that the enhanced electronic polarization of the As ion plays an important role in inducing high T c superconductivity, and that the polaron concept, which has been previously regarded as an untenable mechanism, should be reconsidered for the description of the iron-arsenide superconducting phase.

6.
Nanoscale Res Lett ; 8(1): 515, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314035

RESUMEN

: The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

7.
Nature ; 446(7133): E5, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17361133

RESUMEN

The possibility that a pairing boson might act as the 'glue' to bind electrons into a Cooper pair in superconductors with a high critical temperature (T(c)) is being actively pursued in condensed-matter physics. Gweon et al. claim that there is a large and unusual oxygen-isotope effect on the electronic structure, indicating that phonons have a special importance in high-temperature superconductors. However, we are unable to detect this unusual oxygen-isotope effect in new data collected under almost identical material and experimental conditions. Our findings point towards a more conventional influence of phonons in these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...