Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Epidemiol ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38191178

RESUMEN

The Tsuruoka Metabolomics Cohort Study (TMCS) is an ongoing population-based cohort study being conducted in the rural area of Yamagata Prefecture, Japan. This study aimed to enhance the precision prevention of multi-factorial, complex diseases, including non-communicable and aging-associated diseases, by improving risk stratification and prediction measures. At baseline, 11,002 participants aged 35-74 years were recruited in Tsuruoka City, Yamagata Prefecture, Japan, between 2012 and 2015, with an ongoing follow-up survey. Participants underwent various measurements, examinations, tests, and questionnaires on their health, lifestyle, and social factors. This study used an integrative approach with deep molecular profiling to identify potential biomarkers linked to phenotypes that underpin disease pathophysiology and provide better mechanistic insights into social health determinants. The TMCS incorporates multi-omics data, including genetic and metabolomic analyses of 10,933 participants and comprehensive data collection ranging from physical, psychological, behavioral, and social to biological data. The metabolome is used as a phenotypic probe because it is sensitive to changes in physiological and external conditions. The TMCS focuses on collecting outcomes for cardiovascular disease, cancer incidence and mortality, disability, functional decline due to aging and disease sequelae, and the variation in health status within the body represented by omics analysis that lies between exposure and disease. It contains several sub-studies on aging, heated tobacco products, and women's health. This study is notable for its robust design, high participation rate (89%), and long-term repeated surveys. Moreover, it contributes to precision prevention in Japan and East Asia as a well-established multi-omics platform.

2.
Mol Cancer Res ; 22(1): 82-93, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37773022

RESUMEN

Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS: SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Purinas/metabolismo , Nucleótidos de Purina/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Neoplasias Pulmonares/genética
3.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37714156

RESUMEN

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacología , Decitabina/uso terapéutico , Azacitidina/farmacología , Azacitidina/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología , Leucemia Mieloide Aguda/patología , Metilación de ADN/genética , ADN , Proteínas Adaptadoras Transductoras de Señales/genética
4.
Nat Commun ; 14(1): 3863, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391427

RESUMEN

Fever is a common symptom of influenza and coronavirus disease 2019 (COVID-19), yet its physiological role in host resistance to viral infection remains less clear. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C increases host resistance to viral pathogens including influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High heat-exposed mice increase basal body temperature over 38 °C to enable more bile acids production in a gut microbiota-dependent manner. The gut microbiota-derived deoxycholic acid (DCA) and its plasma membrane-bound receptor Takeda G-protein-coupled receptor 5 (TGR5) signaling increase host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage. Furthermore, the DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, we demonstrate that certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group. These findings implicate a mechanism by which virus-induced high fever increases host resistance to influenza virus and SARS-CoV-2 in a gut microbiota-dependent manner.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Virus de la Influenza A , Gripe Humana , Cricetinae , Animales , Ratones , Humanos , SARS-CoV-2 , Temperatura Corporal , Fiebre , Ácidos y Sales Biliares , Mesocricetus
5.
Metabolites ; 13(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110217

RESUMEN

High-throughput metabolomics has enabled the development of large-scale cohort studies. Long-term studies require multiple batch-based measurements, which require sophisticated quality control (QC) to eliminate unexpected bias to obtain biologically meaningful quantified metabolomic profiles. Liquid chromatography-mass spectrometry was used to analyze 10,833 samples in 279 batch measurements. The quantified profile included 147 lipids including acylcarnitine, fatty acids, glucosylceramide, lactosylceramide, lysophosphatidic acid, and progesterone. Each batch included 40 samples, and 5 QC samples were measured for 10 samples of each. The quantified data from the QC samples were used to normalize the quantified profiles of the sample data. The intra- and inter-batch median coefficients of variation (CV) among the 147 lipids were 44.3% and 20.8%, respectively. After normalization, the CV values decreased by 42.0% and 14.7%, respectively. The effect of this normalization on the subsequent analyses was also evaluated. The demonstrated analyses will contribute to obtaining unbiased, quantified data for large-scale metabolomics.

6.
Oncogene ; 42(16): 1294-1307, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36879117

RESUMEN

Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Neoplasias Colorrectales/patología , Aminoácidos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Oxidorreductasas de Alcohol/metabolismo
7.
Sci Adv ; 9(4): eadd2120, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696509

RESUMEN

Although gut microbiota has been linked to exercise, whether alterations in the abundance of specific bacteria improve exercise performance remains ambiguous. In a cross-sectional study involving 25 male long-distance runners, we found a correlation between Bacteroides uniformis abundance in feces and the 3000-m race time. In addition, we administered flaxseed lignan or α-cyclodextrin as a test tablet to healthy, active males who regularly exercised in a randomized, double-blind, placebo-controlled study to increase B. uniformis in the gut (UMIN000033748). The results indicated that α-cyclodextrin supplementation improved human endurance exercise performance. Moreover, B. uniformis administration in mice increased swimming time to exhaustion, cecal short-chain fatty acid concentrations, and the gene expression of enzymes associated with gluconeogenesis in the liver while decreasing hepatic glycogen content. These findings indicate that B. uniformis enhances endurance exercise performance, which may be mediated by facilitating hepatic endogenous glucose production.


Asunto(s)
Microbioma Gastrointestinal , alfa-Ciclodextrinas , Humanos , Ratones , Masculino , Animales , Estudios Transversales , Bacteroides/genética
8.
Sci Rep ; 12(1): 14883, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050466

RESUMEN

Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Adipocitos Marrones , Tejido Adiposo Pardo/metabolismo , Animales , Colina/metabolismo , Metilaminas , Ratones , Infarto del Miocardio/metabolismo , Termogénesis/genética
9.
Langmuir ; 38(40): 12367-12372, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36175381

RESUMEN

The morphology involving the height difference and the surface roughness of the binary monolayers of saturated fatty acids were evaluated using atomic force microscopy (AFM) to investigate the mixing behavior of their monolayers. AFM observations revealed that the mixed monolayers of (palmitic acid/arachidic acid) and (arachidic acid/lignoceric acid), which had four methylene group differences between fatty acids, were in a molecularly mixed state. Further, the mixed monolayer of (stearic acid/lignoceric acid), which had six methylene group differences, was in a phase-separated state. From the results of the present and previous studies, it became clear that the difference in the cohesive energy between fatty acids, which corresponds to the enthalpy difference, was an important factor in determining whether the molecular aggregation state of a fatty acid mixed monolayer was in a molecularly mixed or phase-separated state. Moreover, the boundary value of cohesive energy difference was approximately 2.5 kJ mol-1 at a subphase temperature of 293 K.


Asunto(s)
Ácidos Eicosanoicos , Ácidos Grasos , Microscopía de Fuerza Atómica , Ácido Palmítico , Ácidos Esteáricos , Propiedades de Superficie
10.
STAR Protoc ; 3(3): 101531, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35819883

RESUMEN

Capillary electrophoresis mass spectrometry (CE-MS) can measure the intracellular amount of highly polar and charged metabolites; liquid chromatography mass spectrometry (LC-MS) can quantify hydrophobic metabolites. A comprehensive metabolome analysis requires independent sample preparation for LC-MS and CE-MS. Here, we present a protocol to prepare for sequentially analyzing the metabolites from one sample. Here we describe the steps for breast cancer cell lines, MCF-7 cells, but the protocol can be applied to other cell types.


Asunto(s)
Metaboloma , Metabolómica , Línea Celular , Células Cultivadas , Espectrometría de Masas/métodos , Metabolómica/métodos
11.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749514

RESUMEN

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Senescencia Celular , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Interleucina-33/metabolismo , Ratones , Obesidad/complicaciones , Obesidad/metabolismo , Microambiente Tumoral
12.
Nat Commun ; 13(1): 3706, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764642

RESUMEN

Ribosome biogenesis is an energetically expensive program that is dictated by nutrient availability. Here we report that nutrient deprivation severely impairs precursor ribosomal RNA (pre-rRNA) processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, pre-rRNAs stored under starvation are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient stress leads to perturbed ribosome assembly upon nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine is dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which is in turn dependent on Raf/MEK/ERK signaling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that tumor cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.


Asunto(s)
Glutamina , Neoplasias , Glutamina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Sci Rep ; 11(1): 13474, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188151

RESUMEN

Deoxyribonucleotide biosynthesis from ribonucleotides supports the growth of active cancer cells by producing building blocks for DNA. Although ribonucleotide reductase (RNR) is known to catalyze the rate-limiting step of de novo deoxyribonucleotide triphosphate (dNTP) synthesis, the biological function of the RNR large subunit (RRM1) in small-cell lung carcinoma (SCLC) remains unclear. In this study, we established siRNA-transfected SCLC cell lines to investigate the anticancer effect of silencing RRM1 gene expression. We found that RRM1 is required for the full growth of SCLC cells both in vitro and in vivo. In particular, the deletion of RRM1 induced a DNA damage response in SCLC cells and decreased the number of cells with S phase cell cycle arrest. We also elucidated the overall changes in the metabolic profile of SCLC cells caused by RRM1 deletion. Together, our findings reveal a relationship between the deoxyribonucleotide biosynthesis axis and key metabolic changes in SCLC, which may indicate a possible link between tumor growth and the regulation of deoxyribonucleotide metabolism in SCLC.


Asunto(s)
Proliferación Celular , Desoxirribonucleótidos/biosíntesis , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Desoxirribonucleótidos/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
14.
Anal Chem ; 92(14): 9799-9806, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32538620

RESUMEN

Dipeptides have attracted much attention as post-amino acids with physical properties and functions different from those of amino acids. However, a given dipeptide cannot be distinguished by mass spectrometry from its structural isomer with an opposite amino acid binding order unless these isomers are separated before introduction, which complicates the comprehensive analysis of dipeptides. Herein, a novel analytical platform for dipeptide analysis by capillary electrophoresis tandem mass spectrometry and liquid chromatography tandem mass spectrometry is developed. This method is used to quantitate 335 dipeptides and achieves excellent separation of structural isomers with opposite binding orders, high correlation coefficients, and low instrumental detection limits (0.088-83.1 nM). Moreover, acceptable recoveries (70-135%) are observed for most tested dipeptides in chicken liver samples spiked both before and after preparation. The developed method is also applied to the quantitation of dipeptides in the livers of mice fed different diets to detect 236 dipeptides, and the shift from a normal diet to a high-fat diet is shown to increase/decrease (p < 0.05, fold-change < 0.5) the contents of 0/29 dipeptides, respectively. The developed method is expected to facilitate the search for new dipeptide applications such as novel functional components of foods and biomarkers of diseases.


Asunto(s)
Cromatografía Liquida/métodos , Dipéptidos/química , Electroforesis Capilar/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Dieta Alta en Grasa , Límite de Detección , Hígado/química , Hígado/metabolismo , Masculino , Ratones , Reproducibilidad de los Resultados
15.
Oncogene ; 38(42): 6835-6849, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31406254

RESUMEN

Chondrosarcoma is the second most common malignant bone tumor. It is characterized by low vascularity and an abundant extracellular matrix, which confer these tumors resistance to chemotherapy and radiotherapy. There are currently no effective treatment options for relapsed or dedifferentiated chondrosarcoma, and new targeted therapies need to be identified. Isocitrate dehydrogenase (IDH) mutations, which are detected in ~50% of chondrosarcoma patients, contribute to malignant transformation by catalyzing the production of 2-hydroxyglutarate (2-HG), a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Mutant IDH inhibitors are therefore potential novel anticancer drugs in IDH mutant tumors. Here, we examined the efficacy of the inhibition of mutant IDH1 as an antitumor approach in chondrosarcoma cells in vitro and in vivo, and investigated the association between the IDH mutation and chondrosarcoma cells. DS-1001b, a novel, orally bioavailable, selective mutant IDH1 inhibitor, impaired the proliferation of chondrosarcoma cells with IDH1 mutations in vitro and in vivo, and decreased 2-HG levels. RNA-seq analysis showed that inhibition of mutant IDH1 promoted chondrocyte differentiation in the conventional chondrosarcoma L835 cell line and caused cell cycle arrest in the dedifferentiated JJ012 cell line. Mutant IDH1-mediated modulation of SOX9 and CDKN1C expression regulated chondrosarcoma tumor progression, and DS-1001b upregulated the expression of these genes via a common mechanism involving the demethylation of H3K9me3. DS-1001b treatment reversed the epigenetic changes caused by aberrant histone modifications. The present data strongly suggest that inhibition of mutant IDH1 is a promising therapeutic approach in chondrosarcoma, particularly for the treatment of relapsed or dedifferentiated chondrosarcoma.


Asunto(s)
Neoplasias Óseas/patología , Condrosarcoma/patología , Inhibidores Enzimáticos/farmacología , Código de Histonas , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación , Neoplasias Óseas/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular , Proliferación Celular , Condrosarcoma/metabolismo , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Factor de Transcripción SOX9/metabolismo
16.
Nature ; 572(7771): 614-619, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435015

RESUMEN

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Metabolismo Energético , Homeostasis , Proteínas Mitocondriales/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Termogénesis , Tejido Adiposo Pardo/citología , Animales , Frío , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(37): E7697-E7706, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847964

RESUMEN

Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.


Asunto(s)
Adenoma/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adenoma/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular/fisiología , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Femenino , Genes myc , Humanos , Masculino , Metabolómica/métodos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Pirimidinas/biosíntesis , Transcriptoma
18.
Chembiochem ; 18(10): 910-913, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28236354

RESUMEN

The use of synthetic biomarkers is an emerging technique to improve disease diagnosis. Here, we report a novel design strategy that uses analyte-responsive acetaminophen (APAP) to expand the catalogue of analytes available for synthetic biomarker development. As proof-of-concept, we designed hydrogen peroxide (H2 O2 )-responsive APAP (HR-APAP) and succeeded in H2 O2 detection with cellular and animal experiments. In fact, for blood samples following HR-APAP injection, we demonstrated that the plasma concentration ratio [APAP+APAP conjugates]/[HR-APAP] accurately reflects in vivo differences in H2 O2 levels. We anticipate that our practical methodology will be broadly useful for the preparation of various synthetic biomarkers.


Asunto(s)
Acetaminofén/metabolismo , Biomarcadores/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Analgésicos no Narcóticos/metabolismo , Animales , Células Cultivadas , Cromatografía Liquida , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Ratones , Oxidantes/metabolismo , Espectrometría de Masas en Tándem
19.
J Gastroenterol ; 52(8): 889-903, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27873093

RESUMEN

BACKGROUND: Obesity is associated with risk of adenocarcinoma in the proximal stomach. We aimed to identify the links between dietary fat and gastric premalignant lesions. METHODS: C57BL/6 mice were fed high fat diet (HFD), and gastric mucosa was histologically analysed. Morphological changes were also analysed using an electron microscope. Transcriptome analysis of purified parietal cells was performed, and non-parietal gastric corpus epithelial cells were subjected to single-cell gene-expression profiling. Composition of gastric contents of HFD-fed mice was compared with that of the HFD itself. Lipotoxicity of free fatty acids (FFA) was examined in primary culture and organoid culture of mouse gastric epithelial cells in vitro, as well as in vivo, feeding FFA-rich diets. RESULTS: During ~8-20 weeks of HFD feeding, the parietal cells of the stomach displayed mitochondrial damage, and a total of 23% of the mice developed macroscopically distinct metaplastic lesions in the gastric corpus mucosa. Transcriptome analysis of parietal cells indicated that feeding HFD enhanced pathways related to cell death. Histological analysis and gene-expression profiling indicated that the lesions were similar to previously reported precancerous lesions identified as spasmolytic polypeptide-expressing metaplasia. FFAs, including linoleic acid with refluxed bile acids were detected in the stomachs of the HFD-fed mice. In vitro, FFAs impaired mitochondrial function and decreased the viability of parietal cells. In vivo, linoleic acid-rich diet, but not stearic acid-rich diet induced parietal-cell loss and metaplastic changes in mice. CONCLUSIONS: Dietary lipids induce parietal-cell damage and may lead to the development of precancerous metaplasia.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Ácidos Grasos/efectos adversos , Mucosa Gástrica/patología , Células Parietales Gástricas/patología , Lesiones Precancerosas/patología , Animales , Ácidos y Sales Biliares/metabolismo , Muerte Celular/genética , Células Cultivadas , Grasas de la Dieta/administración & dosificación , Células Epiteliales/patología , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Jugo Gástrico/metabolismo , Perfilación de la Expresión Génica , Ácido Linoleico/administración & dosificación , Ácido Linoleico/efectos adversos , Ácido Linoleico/metabolismo , Masculino , Metaplasia/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/ultraestructura , Lesiones Precancerosas/genética , Cultivo Primario de Células , Ácidos Esteáricos/administración & dosificación , Ácidos Esteáricos/efectos adversos
20.
Sci Rep ; 6: 20234, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831950

RESUMEN

Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses.


Asunto(s)
Adaptación Fisiológica , Flores/fisiología , Fenotipo , Rosa/fisiología , Estaciones del Año , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Alcohol Feniletílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...