Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Radiat Res ; 65(3): 315-322, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38648785

RESUMEN

Ionizing radiation (IR) causes DNA damage, particularly DNA double-strand breaks (DSBs), which have significant implications for genome stability. The major pathways of repairing DSBs are homologous recombination (HR) and nonhomologous end joining (NHEJ). However, the repair mechanism of IR-induced DSBs in embryos is not well understood, despite extensive research in somatic cells. The externally developing aquatic organism, Xenopus tropicalis, serves as a valuable model for studying embryo development. A significant increase in zygotic transcription occurs at the midblastula transition (MBT), resulting in a longer cell cycle and asynchronous cell divisions. This study examines the impact of X-ray irradiation on Xenopus embryos before and after the MBT. The findings reveal a heightened X-ray sensitivity in embryos prior to the MBT, indicating a distinct shift in the DNA repair pathway during embryo development. Importantly, we show a transition in the dominant DSB repair pathway from NHEJ to HR before and after the MBT. These results suggest that the MBT plays a crucial role in altering DSB repair mechanisms, thereby influencing the IR sensitivity of developing embryos.


Asunto(s)
Blástula , Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Blástula/efectos de la radiación , Blástula/metabolismo , Xenopus/embriología , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Embrión no Mamífero/metabolismo , Rayos X
2.
Analyst ; 148(18): 4291-4299, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580955

RESUMEN

For quantitative visualization of trace elements, an online isotope dilution (ID) laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method capable of accurately correcting the detection amount of targets is presented. Two aerosols from an ablated sample and a nebulized isotopically enriched spike solution were mixed online using a dual-port spray chamber. In this paper, transmission efficiency (TE) of each of the two gas streams to the ICP-MS detector is revealed, and the quantification values were corrected by including the ratio of TEs in the calculation of the online ID method. To verify the developed method, Fe and Sr as model elements in five certified reference materials (CRMs, glass: SRM 610, 612, 614, alloy: SS-356, -383) were quantified without the use of matrix-matched CRMs. The resultant values agreed with the certified values of CRMs in the range of 92.7-104.7% and 92.8-109.0% for Fe and Sr, respectively. The LODs (3σ) were 0.54 and 0.17 µg g-1 for Fe and Sr, respectively. In addition, the applicability of this method to quantitative imaging of unknown solid samples was demonstrated for actual biological hard tissues (a mouse incisor, human primary tooth, and fish otolith) using the result of shot-analysis. The results were consistent with the reported concentration range obtained by wet chemical analysis.

3.
Anal Chem ; 95(11): 4932-4939, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36906855

RESUMEN

Although thermal ionization mass spectrometry (TIMS) has been employed for the high-precision analysis of isotope ratios, direct quantification of artificial mono-nuclide in the environment is difficult by even using isotope dilution (ID) due to the coexistence of the great magnitude of natural stable nuclides or isobars. In traditional TIMS and ID-TIMS, a sufficient amount of stable Sr doped on a filament is required to realize a stable and adequate ion-beam intensity (i.e., thermally ionized beams). However, the background noise (BGN) at m/z 90, detected by an electron multiplier, disturbs 90Sr analysis at low concentration levels due to peak tailing of a significant 88Sr ion beam dependent on the 88Sr-doping amount. Here, TIMS assisted by quadruple energy filtering was successfully employed for the direct quantification of attogram levels of an artificial monoisotopic radionuclide strontium-90 (90Sr) in microscale biosamples. Direct quantification was achieved by integrating the ID quantification of natural Sr and simultaneous 90Sr/86Sr isotope ratio analysis. Additionally, the measurement amount calculated by the combination of the ID and intercalibration was corrected for the net result amount of 90Sr by subtracting dark noise and the detected amount derived from the survived 88Sr, which are equivalent with the BGN intensity at m/z 90. Background correction revealed that the detection limits were in the range of 6.15 × 10-2-3.90 × 10-1 ag (0.31-1.95 µBq), depending on the concentration of natural Sr in a 1 µL sample, and the quantification of 0.98 ag (5.0 µBq) of 90Sr in 0-300 mg/L of natural Sr was successful. This method could analyze small sample quantities (1 µL), and the quantitative results were verified against authorized radiometric analysis techniques. Furthermore, the amount of 90Sr in actual teeth was successfully quantified. This method will be a powerful tool for measuring 90Sr in the measurement of micro-samples, which are required to assess and understand the degree of internal radiation exposure.

4.
Environ Pollut ; 306: 119359, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487469

RESUMEN

Genetic effects and radioactive contamination of large mammals, including wild boar (Sus scrofa), have been studied in Japan because of dispersal of radionuclides from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Such studies have generally demonstrated a declining trend in measured radiocesium body burdens in wildlife. Estimating radiation exposure to wildlife is important to understand possible long-term impacts. Here, radiation exposure was evaluated in 307 wild boar inhabiting radioactively contaminated areas (50-8000 kBq m-2) in Fukushima Prefecture from 2016 to 2019, and genetic markers were examined to assess possible germline mutations caused by chronic radiation exposures to several generations of wild boar. Internal Cs activity concentrations in boar remained high in areas near the power plant with the highest concentration of 54 kBq kg-1 measured in 2019. Total dose rates to wild boar ranged from 0.02 to 36 µGy h-1, which was primarily attributed to external radiation exposure, and dose rates to the maximally exposed animals were above the generic no-effects benchmark of 10 µGy h-1. Using the estimated age of each animal, lifetime radiation doses ranged from <0.1 mGy to 700 mGy. Despite chronic exposures, the genetic analyses showed no significant accumulation of mutation events. Because wild boar is an occasional human dietary item in Japan, effective dose to humans from ingesting contaminated wild boar meat was calculated. Hypothetical consumption of contaminated wild boar meat from radioactively contaminated areas in Fukushima, at the per capita pork consumption rate (12.9 kg y-1), would result in an average effective annual dose of 0.9 mSv y-1, which is below the annual ingestion limit of 1 mSv y-1. Additionally, a consumption rate of about 1.4 kg y-1 of the most contaminated meat in this study would not exceed annual ingestion limits.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Animales , Animales Salvajes , Radioisótopos de Cesio/análisis , Mutación de Línea Germinal , Humanos , Japón , Carne/análisis , Dosis de Radiación , Sus scrofa/genética , Porcinos
5.
Health Phys ; 121(6): 564-573, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618712

RESUMEN

ABSTRACT: The environmental impact of the Fukushima Daiichi nuclear power plant accident is a source of ongoing concern as there is uncertainty regarding the effects of chronic radiation exposure on local plant and animal life from Fukushima-derived radionuclides. In the current study, changes in proteomic biomarker expression due to chronic environmentally-derived radiation exposures was examined in wild field mice. Serum from 10 wild field mice (Apodemus speciosus) native to the Fukushima difficult-to-return zone and from eight wild field mice native to the Soma area (control) were collected. External dose estimations were completed using measurements of ambient radiation levels and calculating 137Cs concentrations in soil. Internal dose was estimated by counting whole mice using an HPGe detector. Age of the mice was estimated using molar wear. Serum was screened using the aptamer-based SOMAscan proteomic assay technology for changes in expression of 1,310 protein analytes. A subset panel of protein biomarkers that demonstrated significant changes in expression between control and exposed mice was determined and analyzed using Ingenuity Pathway Analysis (IPA). Control animals had a calculated lifetime dose range from 0.001 to 0.007 Gy, and exposed animals had a calculated lifetime dose range from 0.01 to 0.64 Gy. No discernable effect of dose rate was seen as relative dose rate correlated with dose for all samples. Detectable values were obtained for all 1,310 proteins included in the SOMAscan assay. Subset panels of proteins demonstrating significant (p < 0.05) changes in expression with either an upregulated or downregulated 1.5-fold change over control were identified for both the sample cohort inclusive of all exposed samples and the sample cohort restricted to samples from animals receiving "low" dose exposures. These panels of proteins from exposed animals were analyzed using IPA, which highlighted changes in key biological pathways related to injury, respiratory, renal, urological, and gastrointestinal disease, and cancer. Significant changes in expression of proteomic biomarkers were seen in the serum of wild field mice that received environmental exposure to Fukushima-derived radionuclides. Our findings demonstrate novel biomarkers of radiation exposure in wildlife within the Fukushima difficult-to-return zone.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Animales , Radioisótopos de Cesio/análisis , Japón , Ratones , Murinae , Proteómica , Dosis de Radiación
6.
Environ Int ; 155: 106675, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34120002

RESUMEN

The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Animales , Animales Salvajes , Radioisótopos de Cesio/análisis , Daño del ADN , Humanos , Hibridación Fluorescente in Situ , Japón , Plantas de Energía Nuclear
7.
Proc Biol Sci ; 288(1953): 20210874, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34187197

RESUMEN

Natural and anthropogenic disasters have the capability to cause sudden extrinsic environmental changes and long-lasting perturbations including invasive species, species expansion and influence evolution as selective pressures force adaption. Such disasters occurred on 11 March 2011, in Fukushima, Japan, when an earthquake, tsunami and meltdown of a nuclear power plant all drastically reformed anthropogenic land use. Using genetic data, we demonstrate how wild boar (Sus scrofa leucomystax) have persevered against these environmental changes, including an invasion of escaped domestic pigs (Sus scrofa domesticus). Concurrently, we show evidence of successful hybridization between pigs and native wild boar in this area; however in future offspring, the pig legacy has been diluted through time. We speculate that the range expansion dynamics inhibit long-term introgression and introgressed alleles will continue to decrease at each generation while only maternally inherited organelles will persist. Using the gene flow data among wild boar, we assume that offspring from hybrid lineages will continue dispersal north at low frequencies as climates warm. We conclude that future risks for wild boar in this area include intraspecies competition, revitalization of human-related disruptions and disease outbreaks.


Asunto(s)
Desastres , Accidente Nuclear de Fukushima , Animales , Hibridación Genética , Japón , Sus scrofa/genética , Porcinos
8.
J Environ Radioact ; 226: 106457, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33227677

RESUMEN

Radiocesium was dispersed from the Fukushima Dai-ichi disaster in March 2011, causing comparatively high radioactive contamination in nearby environments. Radionuclide concentrations in wild rodents (Apodemus argenteus, and Apodemus speciosus) within these areas were monitored from 2012 to 2016. However, whole-organism to soil transfer parameters (i.e., concentration ratio, CRwo-soil) for wild rodents at Fukushima were not determined and hence were lacking from the international transfer databases. We augmented the 2012-2016 data by collecting soil activity concentrations (Bq kg-1, dry mass) from five rodent sampling sites in Fukushima Prefecture, and developed corresponding CRwo-soil values for radiocesium (134Cs and 137Cs) based on rodent radioactivity concentrations (Bq kg-1, fresh mass). The CRwo-soil were added to the Wildlife Transfer Database (WTD; http://www.wildlifetransferdatabase.org/), supporting the development of the International Commission on Radiological Protection's (ICRP) environmental protection framework, and increasing the WTD from 84 to 477 entries for cesium and Muridae ('Reference Rat'). Significant variation occurred in CRwo-soil values between study sites within Fukushima Prefecture. The geometric mean CRwo-soil, in this paper, was higher than that reported for Muridae species for Chernobyl. Radiocaesium absorbed dose rates were also estimated for wild rodents inhabiting the five Fukushima study sites and ranged from 1.3 to 33 µGy h-1. Absorbed dose rates decreased by a factor of two from 2012 to 2016. Dose rates in highly contaminated areas were within the ICRP derived consideration reference level for Reference Rat (0.1-1 mGy d-1), suggesting the possible occurrence of deleterious effects and need for radiological effect studies in the Fukushima area.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Animales , Radioisótopos de Cesio/análisis , Japón , Dosis de Radiación , Ratas
9.
Sci Rep ; 9(1): 17505, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31745182

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 9(1): 11537, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395920

RESUMEN

The 2011 Tohoku earthquake drastically changed human activities in some regions of Fukushima Prefecture, Japan. The subsequent tsunami damage and radioactive pollution from the Fukushima Daiichi nuclear power plant resulted in the evacuation of humans, and abandonment of agricultural lands, allowing population expansion of wildlife into areas formally inhabited by domesticated livestock. Unintentional escape of domesticated pigs into wildlife inhabited environments also occurred. In this study, we tested the possibility of introgression between wild boar and domesticated pigs in Fukushima and neighboring prefectures. We analyzed mitochondrial DNA sequences of 338 wild boar collected from populations in the Tohoku region between 2006 and 2018. Although most boar exhibited Asian boar mitochondrial haplotypes, 18 boar, phenotypically identified as wild boar, had a European domesticated pig haplotype. Frequencies of this haplotype have remained stable since first detection in 2015. This result infers ongoing genetic pollution in wild boar populations from released domesticated pigs. In 2018, this haplotype was detected outside of evacuated areas, suggesting migration and successful adaptation. The natural and anthropocentric disasters at Fukushima gave us the rare opportunity to study introgression processes of domestic genes into populations of wild boar. The present findings suggest a need for additional genetic monitoring to document the dispersal of domestic genes within wild boar stock.


Asunto(s)
Animales Domésticos/genética , Flujo Génico/genética , Sus scrofa/genética , Porcinos/genética , Animales , Desastres , Terremotos , Accidente Nuclear de Fukushima , Haplotipos/genética , Humanos , Hibridación Genética/genética , Japón/epidemiología , Reproducción/genética , Sus scrofa/crecimiento & desarrollo , Tsunamis
11.
Sci Rep ; 6: 23601, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27005329

RESUMEN

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident that occurred after the Great East Japan Earthquake in March 2011 released large quantities of radionuclides to the environment. The long-term effects of radioactive cesium (Cs) on biota are of particular concern. We investigated the accumulation of radioactive Cs derived from the FDNPP accident, and chronic effects of environmental radionuclides on male reproduction, in the large Japanese field mouse (Apodemus speciosus). In 2013 and 2014, wild mice were captured at 2 sites in Fukushima Prefecture and at 2 control sites that were distant from Fukushima. Although the median concentrations of (134)Cs and (137)Cs in the mice from Fukushima exceeded 4,000 Bq/kg, there were no significant differences in the apoptotic cell frequencies or the frequencies of morphologically abnormal sperm among the capture sites. Thus, we conclude that radiation did not cause substantial male subfertility in Fukushima during 2013 and 2014, and radionuclide pollution levels in the study sites would not be detrimental to spermatogenesis of the wild mice in Fukushima.


Asunto(s)
Radioisótopos de Cesio/análisis , Espermatogénesis/efectos de la radiación , Testículo/química , Testículo/efectos de la radiación , Animales , Supervivencia Celular/efectos de la radiación , Accidente Nuclear de Fukushima , Japón , Masculino , Ratones , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis
12.
J Vet Med Sci ; 77(7): 799-807, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25754934

RESUMEN

The large Japanese field mouse, Apodemus speciosus, is a potential indicator of environmental stress, but this function has not been confirmed by histological studies. Since environmental stress affects the reproductive function of mice, we determined the reproductive characteristics of this species at two locations: Toyama (36°35'N, 137°24'E) and Aomori (40°35'N, 140°57'E). Mice were captured during May-November (n=119) and July-November (n=146) at these locations, respectively. We classified the breeding season from the numbers of pregnant females and young, in addition to the spermatogenic cycle and seasonal changes in seminiferous tubule morphology of males. Testicular weight was measured, and seminiferous tubule morphology was examined histologically. Fourteen stages were found in the seminiferous epithelium cycle based on acrosome formation and spermatid head morphology. At both locations, the breeding season peaked from late summer to early autumn and possibly in spring. Spermatogenic activity was classified into 4 periods from June to November: resting around June and October-November; resumptive around July; active around August; and degenerative around September. During the resting period, the seminiferous tubules consisted of Sertoli cells, spermatogonia and spermatocytes. Spermatogenesis began during the resumptive period, and spermatids were observed. During the active period, active spermatogenesis and a broad lumen were observed. During the degenerative period, spermatogenesis ended, and Sertoli cells, spermatogonia, spermatocytes and degenerating exfoliated round spermatids were observed. This study provides scientific information about the testicular histopathological evaluations of the large Japanese field mouse for its use as an index species of environmental pollution.


Asunto(s)
Murinae/fisiología , Túbulos Seminíferos/anatomía & histología , Espermatogénesis/fisiología , Animales , Femenino , Japón , Masculino , Murinae/anatomía & histología , Embarazo , Reproducción/fisiología , Estaciones del Año , Túbulos Seminíferos/fisiología , Testículo/anatomía & histología , Testículo/fisiología
13.
Ecotoxicology ; 22(9): 1335-47, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24026525

RESUMEN

Dioxins cause various adverse effects in animals including teratogenesis, induction of drug metabolizing enzymes, tumor promotion, and endocrine disruption. Above all, endocrine disruption is known to disturb reproduction in adult animals and may, also seriously impact their offspring. However, most previous studies have quantified the species-specific accumulation of dioxins, whereas few studies have addressed the physiological impacts of dioxins on wildlife, such as reduced reproductive function. Here we clarify an effect of endocrine disruption caused by dioxins on the Japanese field mouse, Apodemus speciosus. Japanese field mice collected from various sites polluted with dioxins accumulated high concentrations of dioxins in their livers. Some dioxin congeners, especially, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 3,3',4,4',5-pentachloro biphenyl, 1,2,3,4,6,7,8-heptachlorodibenzofuran, and octachlorodibenzo-p-dioxin, which showed high biota-soil accumulation factors, contributed to concentration of dioxins in mouse livers with an increase of accumulation of total dioxins. As for physiological effects on the Japanese field mouse, high levels of cytochrome P450 1A1 (CYP1A1) mRNA, a drug metabolizing enzyme induced by dioxins, were found in the livers of mice captured at polluted sites. Furthermore, at such sites polluted with dioxins, increased CYP1A1 expression coincided with reduced numbers of active spermatozoa in mice. Thus, disruption in gametogenesis observed in these mice suggests that dioxins not only negatively impact reproduction among Japanese field mice, but might also act as a kind of selection pressure in a chemically polluted environment.


Asunto(s)
Dioxinas/toxicidad , Hígado/química , Murinae , Reproducción/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/análisis , Masculino , Ratones , Suelo/química , Contaminantes del Suelo/análisis , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos
14.
Environ Toxicol Pharmacol ; 29(3): 280-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-21787614

RESUMEN

Dioxins, which are unintentionally generated toxic pollutants, exert a variety of adverse effects on organisms. The majority of these effects, which include teratogenesis, immunosuppression, tumor promotion, and endocrine disruption, are mediated through aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. Genetic variations in AhR result in different survivability under exposure to dioxin contamination, which might affect the genetic structure of wildlife populations through differential susceptibility to dioxin exposure. The aim of this study was to clarify the polymorphisms of AhR in Japanese field mice, Apodemus speciosus, and their functional differences in order to develop a molecular indicator for dioxin sensitivity. Wild Japanese field mice had abundant polymorphisms in AhR coding region. Seventy-one single nucleotide polymorphisms, 27 of which occur amino acid substitutions, and consequently 49 alleles were identified in 63 individuals. In the functional analysis of AhR variants using transient reporter assays, a Gln to Arg mutation at amino acid 799 exhibited a significant decrease in the level of transactivational properties (p=0.015) which might modify the dioxin susceptibility of an individual.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...