Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int Immunopharmacol ; 133: 112099, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38643709

RESUMEN

Visceral hypersensitivity resulting from compromised gut barrier with activated immune system is a key feature of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and Toll-like receptor 4 (TLR4) activate proinflammatory cytokine signaling to induce these changes, which is one of the mechanisms of IBS. As activation of the NLRP3 inflammasome by lipopolysaccharide (LPS) or TLR4 leads to release interleukin (IL)-1ß, the NLRP3 inflammasome may be involved in the pathophysiology of IBS. Tranilast, an anti-allergic drug has been demonstrated to inhibit the NLRP3 inflammasome, and we evaluated the impact of tranilast on visceral hypersensitivity and colonic hyperpermeability induced by LPS or CRF (IBS rat model). Visceral pain threshold caused by colonic balloon distention was measured by monitoring abdominal muscle contractions electrophysiologically. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue. Colonic protein levels of NLRP3 and IL-1ß were assessed by immunoblot or ELISA. Intragastric administration of tranilast (20-200 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Simultaneously, tranilast also abolished these alterations induced by CRF (50 µg/kg). LPS increased colonic protein levels of NLRP3 and IL-1ß, and tranilast inhibited these changes. ß-hydroxy butyrate, an NLRP3 inhibitor, also abolished visceral hypersensitivity and colonic hyperpermeability caused by LPS. In contrast, IL-1ß induced similar GI alterations to LPS, which were not modified by tranilast. In conclusion, tranilast improved visceral pain and colonic barrier by suppression of the NLRP3 inflammasome in IBS rat models. Tranilast may be useful for IBS treating.


Asunto(s)
Colon , Modelos Animales de Enfermedad , Inflamasomas , Interleucina-1beta , Síndrome del Colon Irritable , Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , ortoaminobenzoatos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico , Interleucina-1beta/metabolismo , Ratas , Permeabilidad/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/metabolismo
2.
Biochem Pharmacol ; 224: 116201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608783

RESUMEN

Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.


Asunto(s)
Neuronas Colinérgicas , Colon , Histamina , Permeabilidad , Ratas Sprague-Dawley , Receptor de Adenosina A2B , Nervio Vago , Animales , Histamina/metabolismo , Histamina/farmacología , Ratas , Masculino , Receptor de Adenosina A2B/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Nervio Vago/metabolismo , Colon/metabolismo , Colon/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo
3.
Digestion ; 105(1): 34-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37673052

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal symptoms, but its pathogenesis is not fully understood. SUMMARY: We have recently shown in rats that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve the intestinal barrier dysfunction, which is a major pathophysiology of IBS. We have additionally shown that the neuropeptides injected intracisternally induced a visceral antinociceptive action against colonic distension. Since it has been known that intestinal barrier dysfunction causes visceral hypersensitivity, the other main pathophysiology of IBS, the neuropeptides act centrally to reduce leaky gut, followed by improvement of visceral sensation, leading to therapeutic action on IBS. It has been recently reported that there is a bidirectional relationship between neuroinflammation in the brain and the pathophysiology of IBS. For example, activation of microglia in the brain causes visceral hypersensitivity. Accumulating evidence has suggested that orexin, ghrelin, or oxytocin could improve neuroinflammation in the CNS. All these results suggest that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve intestinal barrier function and visceral sensation and also induce a protective action against neuroinflammation in the brain. KEY MESSAGES: We therefore speculated that orexin, ghrelin, or oxytocin in the brain possess dual actions, improvement of visceral sensation/leaky gut in the gut, and reduction of neuroinflammation in the brain, thereby inducing a therapeutic effect on IBS in a convergent manner.


Asunto(s)
Síndrome del Colon Irritable , Neuropéptidos , Ratas , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/patología , Orexinas/farmacología , Orexinas/uso terapéutico , Ghrelina/farmacología , Ghrelina/uso terapéutico , Oxitocina/uso terapéutico , Oxitocina/farmacología , Enfermedades Neuroinflamatorias , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Encéfalo/patología
4.
Neurogastroenterol Motil ; 35(11): e14659, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574874

RESUMEN

BACKGROUND: Postoperative ileus (POI) is a major complication of abdominal surgery (AS). Impaired gut barrier mediated via Toll-like receptor 4 (TLR4) and interleukin-1 (IL-1) receptor is involved in the development of POI. Phlorizin is a nonselective inhibitor of sodium-linked glucose transporters (SGLTs) and is known to improve lipopolysaccharide (LPS)-induced impaired gut barrier. This study aimed to clarify our hypothesis that AS-induced gastric ileus is mediated via TLR4 and IL-1 signaling, and phlorizin improves the ileus. METHODS: AS consisted of a celiotomy and manipulation of the cecum for 1 min. Gastric emptying (GE) in 20 min with liquid meal was determined 3 h after the surgery in rats. The effect of subcutaneous (s.c.) injection of LPS (1 mg kg-1 ) was also determined 3 h postinjection. KEY RESULTS: AS delayed GE, which was blocked by TAK-242, an inhibitor of TLR4 signaling and anakinra, an IL-1 receptor antagonist. LPS delayed GE, which was also mediated via TLR4 and IL-1 receptor. Phlorizin (80 mg kg-1 , s.c.) significantly improved delayed GE induced by both AS and LPS. However, intragastrical (i.g.) administration of phlorizin did not alter it. As gut mainly expresses SGLT1, SGLT2 may not be inhibited by i.g. phlorizin. The effect of phlorizin was blocked by ghrelin receptor antagonist in the LPS model. CONCLUSIONS & INFERENCES: AS-induced gastric ileus is mediated via TLR4 and IL-1 signaling, which is simulated by LPS. Phlorizin improves the gastric ileus via activation of ghrelin signaling, possibly by inhibition of SGLT2. Phlorizin may be useful for the treatment of POI.


Asunto(s)
Ileus , Obstrucción Intestinal , Ratas , Animales , Receptor Toll-Like 4 , Florizina/farmacología , Transportador 2 de Sodio-Glucosa , Lipopolisacáridos/toxicidad , Ileus/tratamiento farmacológico , Ileus/etiología , Complicaciones Posoperatorias/tratamiento farmacológico , Obstrucción Intestinal/complicaciones , Interleucina-1 , Receptores de Interleucina-1
5.
J. physiol. biochem ; 79(3): 625-634, ago. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-223753

RESUMEN

Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin’s antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals’ injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin. (AU)


Asunto(s)
Animales , Ratas , Ghrelina/farmacología , Ghrelina/uso terapéutico , Antiinfecciosos Locales/farmacología , Adenosina/farmacología , Colchicina/farmacología , Lipopolisacáridos/toxicidad , Nervio Vago/fisiología , Cerebro
6.
J Pharmacol Sci ; 153(1): 26-30, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524451

RESUMEN

Visceral hypersensitivity and leaky gut, which are mediated via corticotropin-releasing factor (CRF) and Toll-like receptor 4 are key pathophysiology of irritable bowel syndrome (IBS). Metformin was reported to improve these gastrointestinal (GI) changes. In this study, we attempted to determine the effects of imeglimin, which was synthesized from metformin on GI function in IBS rat models. Imeglimin blocked lipopolysaccharide- or CRF-induced visceral hypersensitivity and colonic hyperpermeability. These effects were prevented by compound C or naloxone. These results suggest that imeglimin may be effective for the treatment of IBS by improved visceral sensation and colonic barrier via AMPK and opioid receptor.


Asunto(s)
Síndrome del Colon Irritable , Metformina , Ratas , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Hormona Liberadora de Corticotropina/farmacología , Colon , Metformina/farmacología
7.
Intern Med ; 62(23): 3555-3558, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062730

RESUMEN

We herein report a rare case of periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome that occurred in an 18-year-old man. He visited our hospital with recurrent episodes of a fever, pharyngitis and adenitis without suggestive findings of infection. These episodes resolved within 5 days and recurred quite regularly, with an interval of about 30 days. As the febrile episodes significantly impaired his quality of life, he was treated with colchicine (0.5 mg) as prophylaxis. This completely prevented the episodes during six months of follow-up. Colchicine may therefore be effective in cases of adult-onset PFAPA syndrome.


Asunto(s)
Amiloidosis , Linfadenitis , Linfadenopatía , Faringitis , Estomatitis Aftosa , Masculino , Humanos , Adulto , Adolescente , Colchicina/uso terapéutico , Estomatitis Aftosa/diagnóstico , Estomatitis Aftosa/tratamiento farmacológico , Estomatitis Aftosa/prevención & control , Calidad de Vida , Fiebre/tratamiento farmacológico , Fiebre/etiología , Linfadenitis/diagnóstico , Linfadenitis/tratamiento farmacológico , Linfadenitis/prevención & control , Faringitis/complicaciones , Faringitis/tratamiento farmacológico , Linfadenopatía/tratamiento farmacológico , Amiloidosis/tratamiento farmacológico , Síndrome
8.
Brain Res ; 1809: 148371, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076092

RESUMEN

Leaky gut, an altered intestinal barrier function, has been described in many diseases such as irritable bowel syndrome (IBS). We have recently demonstrated that orexin in the brain blocked leaky gut in rats, suggesting that the brain plays a role in regulation of intestinal barrier function. In the present study, we tried to clarify whether GLP-1 acts centrally in the brain to regulate intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of GLP-1 analogue, liraglutide dose-dependently abolished increased colonic permeability in response to lipopolysaccharide. Either atropine or surgical vagotomy blocked the central GLP-1-induced improvement of colonic hyperpermeability. Intracisternal GLP-1 receptor antagonist, exendin (9-39) prevented the central GLP-1-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of orexin receptor antagonist, SB-334867 blocked the GLP-1-induced improvement of intestinal barrier function. On the other hand, subcutaneous liraglutide also improved leaky gut but larger doses of liraglutide were needed to block it. In addition, neither atropine nor vagotomy blocked subcutaneous liraglutide-induced improvement of leaky gut, suggesting that central or peripheral GLP-1 system works separately to improve leaky gut in a vagal-dependent or independent manner, respectively. These results suggest that GLP-1 acts centrally in the brain to reduce colonic hyperpermeability. Brain orexin signaling and the vagal cholinergic pathway play a vital role in the process. We would therefore suggest that activation of central GLP-1 signaling may be useful for leaky gut-related diseases such as IBS.


Asunto(s)
Síndrome del Colon Irritable , Liraglutida , Ratas , Animales , Orexinas/farmacología , Orexinas/metabolismo , Liraglutida/farmacología , Síndrome del Colon Irritable/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Hipoglucemiantes , Derivados de Atropina
9.
J Physiol Biochem ; 79(3): 625-634, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099079

RESUMEN

Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin's antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals' injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin.


Asunto(s)
Antiinfecciosos Locales , Ghrelina , Ratas , Animales , Ghrelina/farmacología , Ghrelina/uso terapéutico , Adenosina/farmacología , Lipopolisacáridos/toxicidad , Nervio Vago/fisiología , Encéfalo , Colchicina/farmacología , Antiinfecciosos Locales/farmacología
10.
Biochim Biophys Acta Gen Subj ; 1867(5): 130344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889449

RESUMEN

In this study, we attempted to clarify a role of prostaglandin (PG) I2 and its specific receptor, IP in the pathogenesis of irritable bowel syndrome (IBS) using a maternal separation (MS)-induced IBS model. Administration of beraprost (BPS), a specific IP agonist, improved visceral hypersensitivity and depressive state with decreased serum CRF level in the IBS rats. To clarify the mechanism of the effect of BPS, we performed serum metabolome analysis and 1-methylnicotinamide (1-MNA) was identified as a possible candidate for a clue metabolite of pathogenesis of IBS. The serum 1-MNA levels revealed inverse correlation to the level of visceral sensitivity, and positive correlation to a depression marker, immobilizing time. Administration of 1-MNA induced visceral hypersensitivity and depression with increased levels of serum CRF. Since fecal 1-MNA is known for a marker of dysbiosis, we examined the composition of fecal microbiota by T-RFLP analysis. The proportion of clostridium cluster XI, XIVa and XVIII was significantly changed in MS-induced IBS rats treated with BPS. Fecal microbiota transplant of BPS-treated rats improved visceral hypersensitivity and depression in IBS rats. These results suggest for the first time that PGI2-IP signaling plays an important role in IBS phenotypes such as visceral hypersensitivity and depressive state. BPS modified microbiota, thereby inhibition of 1-MNA-CRF pathway, followed by improvement of MS-induced IBS phenotype. These results suggest that the PGI2-IP signaling could be considered to be a therapeutic option for IBS.


Asunto(s)
Síndrome del Colon Irritable , Ratas , Animales , Síndrome del Colon Irritable/metabolismo , Eje Cerebro-Intestino , Epoprostenol , Privación Materna , Heces
11.
Biochem Pharmacol ; 206: 115331, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36330948

RESUMEN

Intestinal barrier dysfunction, a leaky gut, contributes to the pathophysiology of various diseases such as dementia and irritable bowel syndrome (IBS). We recently clarified that orexin, ghrelin, or adenosine A2B signaling in the brain improved leaky gut through the vagus nerve. The present study was performed to clarify whether basal forebrain cholinergic neurons (BFCNs) are implicated in the central regulation of intestinal barrier function. We activated BFCNs using benzyl quinolone carboxylic acid (BQCA), a positive muscarinic M1 allosteric modulator, and evaluated colonic permeability by quantifying the absorbed Evans blue in rat colonic tissue. Intracisternal (not intraperitoneal) injection of BQCA blocked the increased colonic permeability in response to lipopolysaccharide. Vagotomy blocked BQCA-induced improvement of colonic hyperpermeability. Intracisternally administered pirenzepine, a muscarinic M1 selective antagonist, prevented intestinal barrier function improvement by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Adenosine A2B receptor antagonist but not dopamine or opioid receptor antagonist prevented BQCA-induced blockade of colonic hyperpermeability. Additionally, intracisternal injection of pirenzepine blocked orexin- or butyrate-induced intestinal barrier function improvement. These results suggest that BFCNs improve leaky gut through adenosine A2B signaling and the vagal pathway. Furthermore, BFCNs mediate orexin- or butyrate-induced intestinal barrier function improvement. Since BFCNs play a role in cognitive function and a leaky gut is associated with dementia, the present finding may lead us to speculate that BFCNs are involved in the development of dementia by regulating intestinal barrier function.


Asunto(s)
Prosencéfalo Basal , Demencia , Animales , Ratas , Adenosina/farmacología , Butiratos , Colinérgicos , Neuronas Colinérgicas , Orexinas , Pirenzepina , Receptor de Adenosina A2B , Nervio Vago
12.
Intern Med ; 61(16): 2427-2430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965074

RESUMEN

Objective Epipericardial fat necrosis (EFN) has been considered to be a rare cause of acute chest pain, and especially important for emergency physicians. Chest computed tomography (CT) is often used for the diagnosis of EFN after excluding life-threatening states, such as acute coronary syndrome and pulmonary embolism. While the proportion of EFN patients who underwent chest CT in emergency departments is being clarified, little is still known about other departments in Japan. To investigate the proportion of EFN patients who underwent chest CT for acute chest pain in various departments. Methods Chest CT performed from January 2015 to July 2020 in Asahikawa Medical University Hospital in Japan was retrospectively analyzed in this study. All images were reviewed by two radiologists. Results There were 373 outpatients identified by a search using the word 'chest pain' who underwent chest CT. Eight patients satisfying the imaging criteria were diagnosed with EFN. The proportions of patients diagnosed with EFN were 10.7%, 4.8%, 2.8%, 0.9% and 0% in the departments of general medicine, cardiovascular surgery, emergency medicine, cardiovascular internal medicine and respiratory medicine, respectively. Only 12.5% of the patients were correctly diagnosed with EFN, and the other patients were treated for musculoskeletal symptoms, acute pericarditis or hypochondriasis. Conclusion EFN is not rare and is often overlooked in various departments. All physicians as well as emergency physicians should consider the possibility of EFN as the cause of pleuritic chest pain.


Asunto(s)
Necrosis Grasa , Dolor en el Pecho/diagnóstico por imagen , Dolor en el Pecho/etiología , Diagnóstico Diferencial , Necrosis Grasa/complicaciones , Necrosis Grasa/diagnóstico por imagen , Humanos , Japón , Pericardio/diagnóstico por imagen , Estudios Retrospectivos
13.
Physiol Behav ; 254: 113914, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839845

RESUMEN

Brain oxytocin plays a role in gastrointestinal functions. Among them, oxytocin acts centrally to modulate gastrointestinal motility and visceral sensation. Intestinal barrier function, one of important gut functions, is also regulated by the central nervous system. Little is, however, known about a role of central oxytocin in the regulation of intestinal barrier function. The present study was performed to clarify whether brain oxytocin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of oxytocin dose-dependently abolished increased colonic permeability in response to lipopolysaccharide while intraperitoneal injection of oxytocin at the same dose failed to block it. Either atropine or surgical vagotomy blocked the central oxytocin-induced improvement of colonic hyperpermeability. Cannabinoid 1 receptor antagonist but not adenosine or opioid receptor antagonist prevented the central oxytocin-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of oxytocin receptor antagonist blocked the ghrelin- or orexin-induced improvement of intestinal barrier function. These results suggest that oxytocin acts centrally in the brain to reduce colonic hyperpermeability. The vagal cholinergic pathway or cannabinoid 1 receptor signaling plays a vital role in the process. The oxytocin-induced improvement of colonic hyperpermeability mediates the central ghrelin- or orexin-induced improvement of intestinal barrier function. We would therefore suggest that activation of central oxytocin signaling may be useful for leaky gut-related diseases such as irritable bowel syndrome and autism.


Asunto(s)
Cannabinoides , Oxitocina , Animales , Encéfalo , Cannabinoides/farmacología , Ghrelina/farmacología , Orexinas/farmacología , Oxitocina/farmacología , Ratas , Ratas Sprague-Dawley , Nervio Vago
14.
J Med Case Rep ; 16(1): 247, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35739566

RESUMEN

BACKGROUND: Irritable bowel syndrome is a functional gastrointestinal disease. Visceral hypersensitivity is the most important pathophysiology in irritable bowel syndrome. Currently, diagnosis of irritable bowel syndrome is based on symptoms and exclusion of other organic diseases. Although the diagnosis of irritable bowel syndrome can be made based on the Rome IV criteria, one may speculate that complete exclusion of other organic diseases is not so easy, especially in cases uncontrolled with standard therapies. CASE PRESENTATION: We present herein a case of familial Mediterranean fever in a young Japanese patient who had been suffering from an irritable bowel syndrome-like clinical course. A 25-year-old Japanese male had been diagnosed as having diarrhea-predominant irritable bowel syndrome 5 years earlier. Unfortunately, standard therapies failed to improve irritable bowel syndrome symptoms. After careful medical history-taking, we understood that he had also experienced periodic fever since 10 years ago. Although no mutation was identified in the Mediterranean fever gene, not only periodic fever but abdominal symptoms improved completely after colchicine administration. He was therefore diagnosed as having familial Mediterranean fever and that the abdominal symptoms may be related to the disease. CONCLUSIONS: Familial Mediterranean fever should be considered as a cause of irritable bowel syndrome-like symptoms.


Asunto(s)
Amiloidosis , Fiebre Mediterránea Familiar , Síndrome del Colon Irritable , Adulto , Colchicina/uso terapéutico , Diarrea/tratamiento farmacológico , Diarrea/etiología , Fiebre Mediterránea Familiar/complicaciones , Fiebre Mediterránea Familiar/diagnóstico , Fiebre Mediterránea Familiar/tratamiento farmacológico , Fiebre/tratamiento farmacológico , Humanos , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/tratamiento farmacológico , Masculino
15.
Neuropeptides ; 94: 102248, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35526468

RESUMEN

Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.


Asunto(s)
Síndrome del Colon Irritable , Proteínas Quinasas Activadas por AMP , Animales , Apelina/farmacología , Colon , Hormona Liberadora de Corticotropina , Citocinas , Lipopolisacáridos/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4
16.
J Pharmacol Sci ; 146(4): 183-191, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34116731

RESUMEN

Short chain fatty acids readily crosses the gut-blood and blood-brain barrier and acts centrally to influence neuronal signaling. We hypothesized that butyrate, a short-chain fatty acid produced by bacterial fermentation, in the central nervous system may play a role in the regulation of intestinal functions. Colonic permeability and visceral sensation was evaluated in rats. Septic lethality was evaluated in a sepsis model induced by subcutaneous administration of both lipopolysaccharide and colchicine. Intracisternal butyrate dose-dependently improved colonic hyperpermeability and visceral nociception. In contrast, subcutaneous injection of butyrate failed to change it. Intracisternal orexin 1 receptor antagonist or surgical vagotomy blocked the central butyrate-induced improvement of colonic hyperpermeability. The improvement of intestinal hyperpermeability by central butyrate or intracisternal orexin-A was blocked by cannabinoid 1 or 2 receptor antagonist. Intracisternal butyrate significantly improved survival period in septic rats. These results suggest that butyrate acts in the central nervous system to improve gut permeability and visceral nociception through cannabinoid signaling. Endogenous orexin in the brain may mediate the reduction of intestinal hyperpermeability by central butyrate through the vagus nerve. We would suggest that improvement of leaky gut by central butyrate may induce visceral antinociception and protection from septic lethality.


Asunto(s)
Butiratos/farmacología , Colon/metabolismo , Ácidos Grasos Volátiles/farmacología , Nocicepción/efectos de los fármacos , Choque Séptico/mortalidad , Vísceras/fisiología , Animales , Encéfalo/metabolismo , Butiratos/administración & dosificación , Colchicina/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/administración & dosificación , Lipopolisacáridos/efectos adversos , Masculino , Orexinas/metabolismo , Orexinas/fisiología , Permeabilidad , Ratas Sprague-Dawley , Choque Séptico/inducido químicamente , Choque Séptico/prevención & control , Vísceras/efectos de los fármacos
17.
Biomed Pharmacother ; 139: 111649, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33957565

RESUMEN

Visceral hypersensitivity and impaired gut barrier are crucial contributors to the pathophysiology of irritable bowel syndrome (IBS), and those are mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4-pro-inflammatory cytokine signaling. Phlorizin is an inhibitor of sodium-linked glucose transporters (SGLTs), and known to have anti-cytokine properties. Thus, we hypothesized that phlorizin may improve these gastrointestinal changes in IBS, and tested this hypothesis in rat IBS models, i.e., lipopolysaccharide (LPS) or CRF-induced visceral hypersensitivity and colonic hyperpermeability. The visceral pain threshold in response to colonic balloon distention was estimated by abdominal muscle contractions by electromyogram, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue. Subcutaneous (s.c.) injection of phlorizin inhibited visceral hypersensitivity and colonic hyperpermeability induced by LPS in a dose-dependent manner. Phlorizin also blocked CRF-induced these gastrointestinal changes. Phlorizin is known to inhibit both SGLT1 and SGLT2, but intragastric administration of phlorizin may only inhibit SGLT1 because gut mainly expresses SGLT1. We found that intragastric phlorizin did not display any effects, but ipragliflozin, an orally active and selective SGLT2 inhibitor improved the gastrointestinal changes in the LPS model. Compound C, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor and naloxone, an opioid receptor antagonist reversed the effects of phlorizin. In conclusions, phlorizin improved visceral hypersensitivity and colonic hyperpermeability in IBS models. These effects may result from inhibition of SGLT2, and were mediated via AMPK, NO and opioid pathways. Phlorizin may be effective for the treatment of IBS.


Asunto(s)
Colon/metabolismo , Hiperalgesia/tratamiento farmacológico , Síndrome del Colon Irritable/tratamiento farmacológico , Florizina/uso terapéutico , Músculos Abdominales/efectos de los fármacos , Animales , Colon/efectos de los fármacos , Hormona Liberadora de Corticotropina/farmacología , Relación Dosis-Respuesta a Droga , Electromiografía , Inyecciones Subcutáneas , Lipopolisacáridos/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Naloxona/farmacología , Permeabilidad , Florizina/antagonistas & inhibidores , Florizina/farmacología , Ratas , Ratas Sprague-Dawley
18.
J Pharmacol Sci ; 146(3): 121-124, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34030794

RESUMEN

Visceral hypersensitivity and impaired gut barrier are crucial pathophysiology of irritable bowel syndrome (IBS), and injection of lipopolysaccharide or corticotropin-releasing factor, and repeated water avoidance stress simulate these gastrointestinal changes in rat (IBS models). We previously demonstrated that losartan, an angiotensin II type 1 (AT1) receptor antagonist prevented these changes, and we attempted to determine the effects of EMA401, an AT2 receptor antagonist in the current study. EMA401 blocked visceral hypersensitivity and colonic hyperpermeability in these models, and naloxone reversed the effects by EMA401. These results suggest that EMA401 may improve gut function via opioid signaling in IBS.


Asunto(s)
Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Colon/metabolismo , Hiperalgesia/prevención & control , Síndrome del Colon Irritable/tratamiento farmacológico , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Permeabilidad/efectos de los fármacos , Dolor Visceral/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Masculino , Ratas Sprague-Dawley , Dolor Visceral/etiología
19.
Exp Neurol ; 341: 113708, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771554

RESUMEN

Leaky gut that is a condition reflecting intestinal barrier dysfunction has been attracting attention for its relations with many diseases such as irritable bowel syndrome or Alzheimer dementia. We have recently demonstrated that ghrelin acts in the brain to improve leaky gut via the vagus nerve. In the present study, we tried to clarify the precise central mechanisms by which ghrelin improves intestinal barrier function through the vagus nerve. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), blocked the intracisternal ghrelin-induced improvement of intestinal hyperpermeability while dopamine, cannabinoid or opioid receptor antagonist failed to prevent it. Since DPCPX can block adenosine A1 and adenosine A2B receptors, we examined which subtype is involved in the mechanism. Intracisternal injection of adenosine A2B agonist but not adenosine A1 agonist improved colonic hyperpermeability, while peripheral injection of adenosine A2B agonist failed to improve it. Intracisternal adenosine A2B agonist-induced improvement of colonic hyperpermeability was blocked by vagotomy. Adenosine A2B specific antagonist, alloxazine blocked the ghrelin- or central vagal stimulation by 2-deoxy-d-glucose-induced improvement of intestinal hyperpermeability. These results suggest that activation of adenosine A2B receptors in the central nervous system is capable of improving intestinal barrier function through the vagal pathway, and the adenosine A2B receptors may mediate the ghrelin-induced improvement of leaky gut in a vagal dependent fashion. These findings may help us understand the pathophysiology in not only gastrointestinal diseases but also non-gastrointestinal diseases associated with the altered intestinal permeability.


Asunto(s)
Encéfalo/metabolismo , Ghrelina/metabolismo , Mucosa Intestinal/metabolismo , Receptor de Adenosina A2B/metabolismo , Nervio Vago/metabolismo , Agonistas del Receptor de Adenosina A2/administración & dosificación , Antagonistas del Receptor de Adenosina A2/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Ghrelina/administración & dosificación , Humanos , Inyecciones Subcutáneas , Mucosa Intestinal/efectos de los fármacos , Masculino , Permeabilidad/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Nervio Vago/efectos de los fármacos
20.
Neuropeptides ; 86: 102129, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33636498

RESUMEN

Visceral hypersensitivity is a major pathophysiology in irritable bowel syndrome (IBS). Although brain-gut interaction is considered to be involved in the regulation of visceral sensation, little had been known how brain controls visceral sensation. To improve therapeutic strategy in IBS, we should develop a novel approach to control visceral hypersensitivity. Here, we summarized recent data on central control of visceral sensation by neuropeptides in rats. Orexin, ghrelin or oxytocin in the brain is capable of inducing visceral antinociception. Dopamine, cannabinoid, adenosine, serotonin or opioid in the central nervous system (CNS) plays a role in the visceral hyposensitivity. Central ghrelin, levodopa or morphine could induce visceral antinociception via the orexinergic signaling. Orexin induces visceral antinociception through dopamine, cannabinoid, adenosine or oxytocin. Orexin nerve fibers are identified widely throughout the CNS and orexins are implicated in a number of functions. With regard to gastrointestinal functions, in addition to its visceral antinociception, orexin acts centrally to stimulate gastrointestinal motility and improve intestinal barrier function. Brain orexin is also involved in regulation of sleep/awake cycle and anti-depressive action. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with IBS who are frequently accompanied with sleep disturbance, depressive state and disturbed gut functions such as gut motility disturbance, leaky gut and visceral hypersensitivity.


Asunto(s)
Colon , Orexinas/fisiología , Sensación/fisiología , Animales , Humanos , Síndrome del Colon Irritable/fisiopatología , Orexinas/metabolismo , Estimulación Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...