Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(6): 574, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780747

RESUMEN

Concerns about methane (CH4) emissions from rice, a staple sustaining over 3.5 billion people globally, are heightened due to its status as the second-largest contributor to greenhouse gases, driving climate change. Accurate quantification of CH4 emissions from rice fields is crucial for understanding gas concentrations. Leveraging technological advancements, we present a groundbreaking solution that integrates machine learning and remote sensing data, challenging traditional closed chamber methods. To achieve this, our methodology involves extensive data collection using drones equipped with a Micasense Altum camera and ground sensors, effectively reducing reliance on labor-intensive and costly field sampling. In this experimental project, our research delves into the intricate relationship between environmental variables, such as soil conditions and weather patterns, and CH4 emissions. We achieved remarkable results by utilizing unmanned aerial vehicles (UAV) and evaluating over 20 regression models, emphasizing an R2 value of 0.98 and 0.95 for the training and testing data, respectively. This outcome designates the random forest regressor as the most suitable model with superior predictive capabilities. Notably, phosphorus, GRVI median, and cumulative soil and water temperature emerged as the model's fittest variables for predicting these values. Our findings underscore an innovative, cost-effective, and efficient alternative for quantifying CH4 emissions, marking a significant advancement in the technology-driven approach to evaluating rice growth parameters and vegetation indices, providing valuable insights for advancing gas emissions studies in rice paddies.


Asunto(s)
Agricultura , Contaminantes Atmosféricos , Monitoreo del Ambiente , Metano , Oryza , Tecnología de Sensores Remotos , Metano/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Agricultura/métodos , Dispositivos Aéreos No Tripulados , Gases de Efecto Invernadero/análisis , Suelo/química , Contaminación del Aire/estadística & datos numéricos
2.
Plant Mol Biol ; 112(1-2): 33-45, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014509

RESUMEN

The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.


Asunto(s)
Empalme Alternativo , Manihot , Empalme Alternativo/genética , Manihot/genética , Manihot/metabolismo , Nucleótidos , Biblioteca de Genes , Secuencia de Bases
4.
Plant Mol Biol ; 109(3): 233-248, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32902791

RESUMEN

KEY MESSAGE: The field survey in this article showed in 'KU50', a popular variety and late-branching type of cassava in Southeast Asia, that flowering rarely occurs in normal-field conditions in Southeast Asia but is strongly induced in the dry season in the mountainous region. Flowering time is correlated with the expression patterns of MeFT1 and homologs of Arabidopsis GI, PHYA, and NF-Ys. Cassava (Manihot esculenta Crantz) is a tropical crop that is propagated vegetatively rather than sexually by seed. Flowering rarely occurs in the erect-type variety grown in Southeast Asia, but it is known that cassava produces flowers every year in mountainous regions. Data pertaining to the effect of environmental factors on flowering time and gene expression in cassava, however, is limited. The aim of the present study was to determine the kinds of environmental conditions that regulate flowering time in cassava and the underlying molecular mechanisms. The flowering status of KU50, a popular variety in Southeast Asia and late-branching type of cassava, was monitored in six fields in Vietnam and Cambodia. At non-flowering and flowering field locations in North Vietnam, the two FLOWERING LOCUS T (FT)-like genes, MeFT1 and MeFT2, were characterized by qPCR, and the pattern of expression of flowering-related genes and genes responsive to environmental signals were analyzed by using RNA sequencing data from time-series samples. Results indicate that cassava flowering was induced in the dry season in the mountain region, and that flowering time was correlated with the expression of MeFT1, and homologs of Arabidopsis GI, PHYA, and NF-Ys. Based upon these data, we hypothesize that floral induction in cassava is triggered by some conditions present in the mountain regions during the dry season.


Asunto(s)
Arabidopsis , Manihot , Arabidopsis/genética , Arabidopsis/metabolismo , Asia Sudoriental , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Mol Biol ; 109(3): 301-311, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34240309

RESUMEN

KEY MESSAGE: Status of the current outbreak of cassava mosaic disease (CMD) in Southeast Asia was reviewed. Healthy cassava seed production and dissemination systems have been established in Vietnam and Cambodia, along with integrated disease and pest management systems, to combat the outbreak. Cassava (Manihot esculenta Crantz) is one of the most important edible crops in tropical and subtropical regions. Recently, invasive insect pests and diseases have resulted in serious losses to cassava in Southeast Asia. In this review we discuss the current outbreak of cassava mosaic disease (CMD) caused by the Sri Lankan cassava mosaic virus (SLCMV) in Southeast Asia, and summarize similarities between SLCMV and other cassava mosaic begomoviruses. A SATREPS (Science and Technology Research Partnership for Sustainable Development) project "Development and dissemination of sustainable production systems based on invasive pest management of cassava in Vietnam, Cambodia and Thailand", was launched in 2016, which has been funded by The Japan International Cooperation Agency (JICA) and The Japan Science and Technology Agency (JST), Japan. The objectives of SATREPS were to establish healthy seed production and dissemination systems for cassava in south Vietnam and Cambodia, and to develop management systems for plant diseases and insect pests of cassava. To achieve these goals, model systems of healthy seed production in Vietnam and Cambodia have been developed incorporating CMD-resistant planting materials through international networks with The International Center for Tropical Agriculture (CIAT) and The International Institute of Tropical Agriculture (IITA).


Asunto(s)
Begomovirus , Manihot , Asia Sudoriental , Enfermedades de las Plantas/prevención & control
7.
Plant Mol Biol ; 106(3): 285-296, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33855676

RESUMEN

KEY MESSAGE: We characterized genes that function in the photoperiodic flowering pathway in cassava. Transcriptome analysis of field-grown plants revealed characteristic expression patterns of these genes, demonstrating that field-grown cassava experiences two distinct developmental transitions. Cassava is an important crop for both edible and industrial purposes. Cassava develops storage roots that accumulate starch, providing an important source of staple food in tropical regions. To facilitate cassava breeding, it is important to elucidate how flowering is controlled. Several important genes that control flowering time have been identified in model plants; however, comprehensive characterization of these genes in cassava is still lacking. In this study, we identified genes encoding central flowering time regulators and examined these sequences for the presence or absence of conserved motifs. We found that cassava shares conserved genes for the photoperiodic flowering pathway, including florigen, anti-florigen and its associated transcription factor (GIGANTEA, CONSTANS, FLOWERING LOCUS T, CENTRORADIALIS/TERMINAL FLOWER1 and FD) and florigen downstream genes (SUPRESSOR OF OVEREXPRESSION OF CONSTANS1 and APETALA1/FRUITFUL). We conducted RNA-seq analysis of field-grown cassava plants and characterized the expression of flowering control genes. Finally, from the transcriptome analysis we identified two distinct developmental transitions that occur in field-grown cassava.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Manihot/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Colombia , Florigena/antagonistas & inhibidores , Florigena/metabolismo , Flores/genética , Perfilación de la Expresión Génica , Manihot/genética , Manihot/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia
8.
Front Plant Sci ; 11: 1265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013945

RESUMEN

BACKGROUND: Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS: Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS: Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.

9.
Breed Sci ; 70(2): 145-166, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32523397

RESUMEN

In Asia, cassava (Manihot esculenta) is cultivated by more than 8 million farmers, driving the rural economy of many countries. The International Center for Tropical Agriculture (CIAT), in partnership with national agricultural research institutes (NARIs), instigated breeding and agronomic research in Asia, 1983. The breeding program has successfully released high-yielding cultivars resulting in an average yield increase from 13.0 t ha-1 in 1996 to 21.3 t ha-1 in 2016, with significant economic benefits. Following the success in increasing yields, cassava breeding has turned its focus to higher-value traits, such as waxy cassava, to reach new market niches. More recently, building resistance to invasive pests and diseases has become a top priority due to the emergent threat of cassava mosaic disease (CMD). The agronomic research involves driving profitability with advanced technologies focusing on better agronomic management practices thereby maintaining sustainable production systems. Remote sensing technologies are being tested for trait discovery and large-scale field evaluation of cassava. In summary, cassava breeding in Asia is driven by a combination of food and market demand with technological innovations to increase the productivity. Further, exploration in the potential of data-driven agriculture is needed to empower researchers and producers for sustainable advancement.

10.
Plant Biotechnol J ; 18(8): 1711-1721, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31930666

RESUMEN

Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that Oryza sativa CCCH-tandem zinc finger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5-GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress-responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non-transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.


Asunto(s)
Oryza , Sequías , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Zinc , Dedos de Zinc/genética
11.
FEBS Open Bio ; 9(4): 814-825, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30984554

RESUMEN

We developed and modified a precise, rapid, and reproducible protocol isolating high-quality RNA from tissues of multiple varieties of cassava plants (Manihot esculenta Crantz). The resulting method is suitable for use in mini, midi, and maxi preparations and rapidly achieves high total RNA yields (170-600 µg·g-1) using low-cost chemicals and consumables and with minimal contamination from polysaccharides, polyphenols, proteins, and other secondary metabolites. In particular, A260 : A280 ratios were > 2.0 for RNA from various tissues, and all of the present RNA samples yielded ribosomal integrity number values of greater than six. The resulting high purity and quality of isolated RNA will facilitate downstream applications (quantitative reverse transcriptase-polymerase chain reaction or RNA sequencing) in cassava molecular breeding.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Manihot/genética , ARN de Planta/aislamiento & purificación , Perfilación de la Expresión Génica/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
12.
BMC Genomics ; 20(1): 41, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642244

RESUMEN

BACKGROUND: The apomictic reproductive mode of Brachiaria (syn. Urochloa) forage species allows breeders to faithfully propagate heterozygous genotypes through seed over multiple generations. In Brachiaria, reproductive mode segregates as single dominant locus, the apospory-specific genomic region (ASGR). The AGSR has been mapped to an area of reduced recombination on Brachiaria decumbens chromosome 5. A primer pair designed within ASGR-BABY BOOM-like (BBML), the candidate gene for the parthenogenesis component of apomixis in Pennisetum squamulatum, was diagnostic for reproductive mode in the closely related species B. ruziziensis, B. brizantha, and B. decumbens. In this study, we used a mapping population of the distantly related commercial species B. humidicola to map the ASGR and test for conservation of ASGR-BBML sequences across Brachiaria species. RESULTS: Dense genetic maps were constructed for the maternal and paternal genomes of a hexaploid (2n = 6x = 36) B. humidicola F1 mapping population (n = 102) using genotyping-by-sequencing, simple sequence repeat, amplified fragment length polymorphism, and transcriptome derived single nucleotide polymorphism markers. Comparative genomics with Setaria italica provided confirmation for x = 6 as the base chromosome number of B. humidicola. High resolution molecular karyotyping indicated that the six homologous chromosomes of the sexual female parent paired at random, whereas preferential pairing of subgenomes was observed in the apomictic male parent. Furthermore, evidence for compensated aneuploidy was found in the apomictic parent, with only five homologous linkage groups identified for chromosome 5 and seven homologous linkage groups of chromosome 6. The ASGR mapped to B. humidicola chromosome 1, a region syntenic with chromosomes 1 and 7 of S. italica. The ASGR-BBML specific PCR product cosegregated with the ASGR in the F1 mapping population, despite its location on a different carrier chromosome than B. decumbens. CONCLUSIONS: The first dense molecular maps of B. humidicola provide strong support for cytogenetic evidence indicating a base chromosome number of six in this species. Furthermore, these results show conservation of the ASGR across the Paniceae in different chromosomal backgrounds and support postulation of the ASGR-BBML as candidate genes for the parthenogenesis component of apomixis.


Asunto(s)
Apomixis , Brachiaria/genética , Mapeo Cromosómico , Partenogénesis/genética , Cromosomas de las Plantas , Genómica , Cariotipificación , Translocación Genética
13.
Front Plant Sci ; 8: 994, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659945

RESUMEN

We evaluated the yields of Oryza sativa L. 'Nipponbare' rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT) and wild-type (WT) controls, providing 50-90% increases in grain yield (GY). Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

14.
Plant Biotechnol J ; 15(11): 1465-1477, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28378532

RESUMEN

Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequías , Grano Comestible/crecimiento & desarrollo , Galactosiltransferasas/genética , Oryza/genética , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Plant Biotechnol J ; 15(6): 775-787, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27889933

RESUMEN

Nitrogen (N) fertilizers are a major input cost in rice production, and its excess application leads to major environmental pollution. Development of rice varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Here, we report the results of field evaluations of marker-free transgenic NERICA4 (New Rice for Africa 4) rice lines overexpressing barley alanine amino transferase (HvAlaAT) under the control of a rice stress-inducible promoter (pOsAnt1). Field evaluations over three growing seasons and two rice growing ecologies (lowland and upland) revealed that grain yield of pOsAnt1:HvAlaAT transgenic events was significantly higher than sibling nulls and wild-type controls under different N application rates. Our field results clearly demonstrated that this genetic modification can significantly increase the dry biomass and grain yield compared to controls under limited N supply. Increased yield in transgenic events was correlated with increased tiller and panicle number in the field, and evidence of early establishment of a vigorous root system in hydroponic growth. Our results suggest that expression of the HvAlaAT gene can improve NUE in rice without causing undesirable growth phenotypes. The NUE technology described in this article has the potential to significantly reduce the need for N fertilizer and simultaneously improve food security, augment farm economics and mitigate greenhouse gas emissions from the rice ecosystem.


Asunto(s)
Nitrógeno/metabolismo , Oryza/metabolismo , Alanina Transaminasa/genética , Alanina Transaminasa/metabolismo , Genotipo , Oryza/enzimología , Oryza/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transformación Genética/genética
16.
J Plant Res ; 129(4): 711-726, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27138000

RESUMEN

Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.


Asunto(s)
Colletotrichum/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Manihot/genética , Manihot/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Ontología de Genes , Genes de Plantas , Oxilipinas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genética
17.
Plant Biotechnol J ; 13(6): 753-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25487714

RESUMEN

The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.


Asunto(s)
Genes de Plantas , Magnaporthe/patogenicidad , Oryza/microbiología , Factores de Transcripción/genética , Xanthomonas/patogenicidad , Oryza/genética , Regiones Promotoras Genéticas
18.
PLoS One ; 8(9): e74056, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040164

RESUMEN

Cassava (Manihot esculenta Crantz) is an important crop that provides food security and income generation in many tropical countries, and is known for its adaptability to various environmental conditions. Its draft genome sequence and many expressed sequence tags are now publicly available, allowing the development of cassava polymorphism information. Here, we describe the genome-wide discovery of cassava DNA polymorphisms. Using the alignment of predicted transcribed sequences from the cassava draft genome sequence and ESTs from GenBank, we discovered 10,546 single-nucleotide polymorphisms and 647 insertions and deletions. To facilitate molecular marker development for cassava, we designed 9,316 PCR primer pairs to amplify the genomic region around each DNA polymorphism. Of the discovered SNPs, 62.7% occurred in protein-coding regions. Disease-resistance genes were found to have a significantly higher ratio of nonsynonymous-to-synonymous substitutions. We identified 24 read-through (changes of a stop codon to a coding codon) and 38 premature stop (changes of a coding codon to a stop codon) single-nucleotide polymorphisms, and found that the 5 gene ontology terms in biological process were significantly different in genes with read-through single-nucleotide polymorphisms compared with all cassava genes. All data on the discovered DNA polymorphisms were organized into the Cassava Online Archive database, which is available at http://cassava.psc.riken.jp/.


Asunto(s)
Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Manihot/genética , Polimorfismo Genético , Genoma de Planta , Mutación INDEL , Manihot/metabolismo , Anotación de Secuencia Molecular , Sistemas en Línea , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
19.
Nat Genet ; 45(9): 1097-102, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913002

RESUMEN

The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.


Asunto(s)
Sequías , Genes de Plantas , Oryza/crecimiento & desarrollo , Oryza/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Adaptación Biológica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Orden Génico , Genotipo , Datos de Secuencia Molecular , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología
20.
DNA Res ; 19(4): 335-45, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619309

RESUMEN

Cassava is an important crop that provides food security and income generation in many tropical countries and is known for its adaptability to various environmental conditions. Despite its global importance, the development of cassava microarray tools has not been well established. Here, we describe the development of a 60-mer oligonucleotide Agilent microarray representing ∼20,000 cassava genes and how it can be applied to expression profiling under drought stress using three cassava genotypes (MTAI16, MECU72 and MPER417-003). Our results identified about 1300 drought stress up-regulated genes in cassava and indicated that cassava has similar mechanisms for drought stress response and tolerance as other plant species. These results demonstrate that our microarray is a useful tool for analysing the cassava transcriptome and that it is applicable for various cassava genotypes.


Asunto(s)
Productos Agrícolas/genética , Perfilación de la Expresión Génica , Manihot/genética , Transcriptoma/genética , Sequías , Variación Genética , Genoma de Planta , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...