Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(12): 7828-7833, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36909752

RESUMEN

1,10-Phenanthroline (Phen) is a typical ligand for metal complexation and various metal/Phen complexes have been applied as a catalyst in several organic transformations. This study reports the synthesis of a Phen-based periodic mesoporous organosilica (Phen-PMO) with the Phen moieties being directly incorporated into the organosilica framework. The Phen-PMO precursor, 3,8-bis[(triisopropoxysilyl)methyl]-1,10-phenanthroline (1a), was prepared via the Kumada-Tamao-Corriu cross-coupling of 3,8-dibromo-1,10-phenanthroline and [(triisopropoxysilyl)methyl]magnesium chloride. The co-condensation of 1a and 1,2-bis(triethoxysilyl)ethane in the presence of P123 as the template surfactant afforded Phen-PMO 3 with an ordered 2-D hexagonal mesoporous structure as confirmed by nitrogen adsorption/desorption measurements, X-ray diffraction, and transition electron microscopy. Co(OAc)2 was immobilized on Phen-PMO 3, and the obtained complex showed good catalytic activity for the hydrosilylation reaction of phenylacetylene with phenylsilane.

2.
ACS Omega ; 7(50): 47120-47128, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570269

RESUMEN

Supported platinum nanoparticles are currently the most functional catalysts applied in commercial chemical processes. Although investigations have been performed to improve the dispersion and thermal stability of Pt particles, it is challenging to apply amorphous silica supports to these systems owing to various Pt species derived from the non-uniform surface structure of the amorphous support. Herein, we report the synthesis and characterization of amorphous silica-supported Pt nanoparticles from (cod)Pt-disilicate complex (cod = 1,5-cyclooctadiene), which forms bis-grafted surface Pt species regardless of surface heterogeneity. The synthesized Pt nanoparticles were highly dispersible and had higher hydrogenation activity than those prepared by the impregnation method, irrespective of the calcination and reduction temperatures. The high catalytic activity of the catalyst prepared at low temperatures (such as 150 °C) was attributed to the formation of Pt nanoparticles triggered by the reduction of cod ligands under H2 conditions, whereas that of the catalyst prepared at high temperatures (up to 450 °C) was due to the modification of the SiO2 surface by grafting of the (cod)Pt-disilicate complex.

3.
Chemistry ; 27(47): 12069-12077, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34189785

RESUMEN

Recent advances in surface organometallic chemistry have enabled the detailed characterization of the surface species in single-site heterogeneous catalysts. However, the selective formation of bis-grafted surface species remains challenging because of the heterogeneity of the supporting surface. Herein, we introduce a metal complex bearing bidentate disilicate ligands, -OSi(Ot Bu)2 OSi(Ot Bu)2 O-, as a molecular precursor, which has a silicate framework adjacent to the metal (Pt) center. The grafting of the precursors on silica supports (MCM-41 and CARiACT Q10) proceeded through a substitution reaction on the silicon atoms of the disilicate ligand, which was verified by the detection of isobutene and t BuOH as the elimination products, to selectively yield bis-grafted surface species. The chemical structure of the surface species was characterized by solid-state NMR, and the chemical shift values of the ancillary ligands and 195 Pt nuclei suggested that the bidentate coordination sphere was maintained following grafting.

4.
Dalton Trans ; 49(41): 14592-14597, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107515

RESUMEN

A series of low spin cobalt(i) complexes bearing a tetradentate phenanthroline-based PNNP ligand (2,9-bis((diphenylphosphanyl)methyl)-1,10-phenanthroline), [CoCl(PNNP)] (1), [CoMe(PNNP)] (2) and [Co(CH2SiMe3)(PNNP)] (3), were synthesized and structurally identified. Complex 3 underwent a structural rearrangement of the PNNP skeleton upon heating to form [Co(PNNP')] (4), which is supported by an asymmetrical PNNP' ligand with a dearomatized phenanthroline backbone. Mechanistic studies supported that the transformation from 3 to 4 was initiated by the homolysis of either a Co-CH2SiMe3 bond or a benzylic C-H bond. Complex 4 achieved H-H bond cleavage of H2 (1 atm) at ambient temperature, to form [Co(PNNP'')] (6), in which two H atoms were incorporated into the endocyclic double bond of the PNNP'' ligand backbone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA