Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(7): 12520-12527, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571072

RESUMEN

We demonstrate high-output-power and high-efficiency operation of 1.3-µm-wavelength InP-based photonic-crystal surface-emitting lasers (PCSELs). By introducing a metal reflector and adjusting the phase of the reflected light via optimization of the thickness of the p-InP cladding layer, we successfully achieve an output power of approximately 400 mW with the slope efficiency of 0.4 W/A and the wall-plug efficiency of 20% under CW conditions. In addition, this PCSEL exhibits a narrow circular beam with a divergence angle below 1.6° even at high output powers under CW conditions at temperatures from 15°C to 50°C. We have also demonstrated an output power of over 12 W under pulsed conditions at room temperature.

2.
Opt Express ; 31(19): 31116-31123, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710639

RESUMEN

Short-pulse high-peak-power lasers are crucial laser sources for various applications such as non-thermal ultrafine material processing and eye-safe high-resolution remote sensing. Realizing such operation in a single semiconductor laser chip without amplifiers or external resonators is expected to contribute to the development of compact, affordable laser sources for such applications. In this paper, we demonstrate short-pulse high-peak-power photonic-crystal surface-emitting lasers based on simultaneous absorptive and radiative Q-switching. The proposed device induces an instantaneous and simultaneous decrease in both absorptive and out-of-plane radiation losses due to saturable absorption and self-evolution of the photonic band, respectively, which results in drastic Q-switching operation of the device. Based on this concept, we experimentally demonstrate short-pulse generation with 200-W-class peak power and a pulse width of < 30 ps. In addition, via pulse compression with dispersion compensation, we achieve an even higher peak power of ∼300 W with a shorter pulse width of ∼10 ps.

3.
Nature ; 618(7966): 727-732, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316656

RESUMEN

Realizing large-scale single-mode, high-power, high-beam-quality semiconductor lasers, which rival (or even replace) bulky gas and solid-state lasers, is one of the ultimate goals of photonics and laser physics. Conventional high-power semiconductor lasers, however, inevitably suffer from poor beam quality owing to the onset of many-mode oscillation1,2, and, moreover, the oscillation is destabilized by disruptive thermal effects under continuous-wave (CW) operation3,4. Here, we surmount these challenges by developing large-scale photonic-crystal surface-emitting lasers with controlled Hermitian and non-Hermitian couplings inside the photonic crystal and a pre-installed spatial distribution of the lattice constant, which maintains these couplings even under CW conditions. A CW output power exceeding 50 W with purely single-mode oscillation and an exceptionally narrow beam divergence of 0.05° has been achieved for photonic-crystal surface-emitting lasers with a large resonant diameter of 3 mm, corresponding to over 10,000 wavelengths in the material. The brightness, a figure of merit encapsulating both output power and beam quality, reaches 1 GW cm-2 sr-1, which rivals those of existing bulky lasers. Our work is an important milestone toward the advent of single-mode 1-kW-class semiconductor lasers, which are expected to replace conventional, bulkier lasers in the near future.

4.
Nat Commun ; 14(1): 50, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707512

RESUMEN

Ultrafast dynamics in nanophotonic materials is attracting increasing attention from the perspective of exploring new physics in fundamental science and expanding functionalities in various photonic devices. In general, such dynamics is induced by external stimuli such as optical pumping or voltage application, which becomes more difficult as the optical power to be controlled becomes larger owing to the increase in the energy required for the external control. Here, we demonstrate a concept of the self-evolving photonic crystal, where the spatial profile of the photonic band is dynamically changed through carrier-photon interactions only by injecting continuous uniform current. Based on this concept, we experimentally demonstrate short-pulse generation with a high peak power of 80 W and a pulse width of <30 ps in a 1-mm-diameter GaAs-based photonic crystal. Our findings on self-evolving carrier-photon dynamics will greatly expand the potential of nanophotonic materials and will open up various scientific and industrial applications.

5.
Opt Express ; 30(24): 43503-43512, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523046

RESUMEN

Photonic-crystal surface-emitting lasers (PCSELs), which utilize a two-dimensional (2D) optical resonance inside a photonic crystal for lasing, feature various outstanding functionalities such as single-mode high-power operation and arbitrary control of beam polarizations. Although most of the previous designs of PCSELs employ spatially uniform photonic crystals, it is expected that lasing performance can be further improved if it becomes possible to optimize the spatial distribution of photonic crystals. In this paper, we investigate the structural optimization of PCSELs via quantum annealing towards high-power, narrow-beam-divergence operation with linear polarization. The optimization of PCSELs is performed by the iteration of the following three steps: (1) time-dependent 3D coupled-wave analysis of lasing performance, (2) formulation of the lasing performance via a factorization machine, and (3) selection of optimal solution(s) via quantum annealing. By using this approach, we discover an advanced PCSEL with a non-uniform spatial distribution of the band-edge frequency and injection current, which simultaneously enables higher output power, a narrower divergence angle, and a higher linear polarization ratio than conventional uniform PCSELs. Our results potentially indicate the universal applicability of quantum annealing, which has been mainly applied to specific types of discrete optimization problems so far, for various physics and engineering problems in the field of smart manufacturing.

6.
Opt Express ; 30(15): 26043-26056, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236802

RESUMEN

Flash light sources with a wide field of view (FOV) are indispensable in various fields such as light detection and ranging (LiDAR), optical wireless communication, and adaptive lighting. However, conventional flash light sources, which combine lasers with external optical elements, tend to suffer from high complexity, large size, and high cost. In this study, we investigate a new wide-FOV flash light source which does not require external optical elements, based on a dually modulated photonic crystal surface-emitting laser (PCSEL). First, we propose and design the concept of a photonic crystal into which information of gradually varying diffraction vectors is introduced in order to artificially broaden the divergence angle. We then experimentally demonstrate photonic crystals based on this concept. Finally, by arraying 100 such lasers with mutually different central emission angles and driving all of these lasers simultaneously, we successfully achieve optics-free, 4-W flash illumination over a FOV of 30° × 30° at a wavelength of 940 nm.

7.
Opt Express ; 30(16): 29539-29545, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299127

RESUMEN

We demonstrate high-power continuous-wave (CW) lasing oscillation of 1.3-µm wavelength InP-based photonic-crystal surface-emitting lasers (PCSELs). Single-mode operation with an output power of over 100 mW, a side-mode suppression ratio (SMSR) of over 50 dB, and a narrow single-lobe beam with a divergence angle of below 1.2° are successfully achieved by using a double-lattice photonic crystal structure consisting of high-aspect-ratio deep air holes. The double lattice is designed to enhance both the in-plane optical feedback and the surface radiation effects in the photonic crystal. The coupling coefficients for 180 ∘, +90 ∘, and -90 ∘ diffractions are estimated from the measurements of the photonic band structure as κ1D = 417 cm-1, κ2D+ = 135 cm-1, and κ2D- = 65 cm-1, respectively. The stable single-mode, high-beam-quality operation is attributed to these large coupling coefficients introduced by the asymmetric double-lattice structure.

8.
Nat Commun ; 13(1): 3262, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787613

RESUMEN

Realization of one-chip, ultra-large-area, coherent semiconductor lasers has been one of the ultimate goals of laser physics and photonics for decades. Surface-emitting lasers with two-dimensional photonic crystal resonators, referred to as photonic-crystal surface-emitting lasers (PCSELs), are expected to show promise for this purpose. However, neither the general conditions nor the concrete photonic crystal structures to realize 100-W-to-1-kW-class single-mode operation in PCSELs have yet to be clarified. Here, we analytically derive the general conditions for ultra-large-area (3~10 mm) single-mode operation in PCSELs. By considering not only the Hermitian but also the non-Hermitian optical couplings inside PCSELs, we mathematically derive the complex eigenfrequencies of the four photonic bands around the Γ point as well as the radiation constant difference between the fundamental and higher-order modes in a finite-size device. We then reveal concrete photonic crystal structures which allow the control of both Hermitian and non-Hermitian coupling coefficients to achieve 100-W-to-1-kW-class single-mode lasing.

9.
Opt Express ; 29(16): 25118-25132, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614850

RESUMEN

We develop a self-consistent theoretical model for simulating the lasing characteristics of photonic-crystal surface-emitting lasers (PCSELs) under continuous-wave (CW) operation that takes into account thermal effects caused by current injection. Our model enables us to analyze the lasing characteristics of PCSELs under CW operation by solving self-consistently the changes in the in-plane optical gain and refractive index distribution, which is associated with heat generation and temperature rise, and the change in the oscillation modes. We reveal that the lasing band-edge selectivity and beam quality of the PCSELs are affected by the spatial distribution of the band-edge frequency of the photonic crystal formed by the refractive index distribution, which depends on the temperature distribution in the resonator. Furthermore, we show that single-mode lasing with narrow beam divergence can be realized even at high current injection under CW operation by introducing a photonic-crystal structure with an artificially formed lattice constant distribution, which compensates such band-edge frequency distribution.

10.
Opt Express ; 28(24): 35483-35489, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379661

RESUMEN

We report on electrically driven InP-based photonic-crystal surface-emitting lasers (PCSELs), which possess a deep-air-hole photonic crystal (PC) structure underneath an active region formed by metal-organic vapor-phase-epitaxial (MOVPE) regrowth. Single-mode continuous-wave (CW) lasing operation in 1.3-µm wavelength is successfully achieved at a temperature of 15°C. It is shown that the enhancement of lateral growth during the MOVPE regrowth process of air holes enables the formation of deep air holes with an atomically flat and thin overlayer, whose thickness is less than 100 nm. A threshold current of 120 mA (threshold current density = 0.68 kA/cm2) is obtained in a device with a diameter of 150 µm. A doughnut-like far-field pattern with the narrow beam divergence of less than 1° is observed. Strong optical confinement in the PC structure is revealed from measurements of the photonic band structure, and this strong optical confinement leads to the single-mode CW lasing operation with a low threshold current density.

11.
Nat Commun ; 11(1): 3487, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681086

RESUMEN

Mechanical-free, high-power, high-beam-quality two-dimensional (2D) beam scanning lasers are in high demand for various applications including sensing systems for smart mobility, object recognition systems, and adaptive illuminations. Here, we propose and demonstrate the concept of dually modulated photonic crystals to realize such lasers, wherein the positions and sizes of the photonic-crystal lattice points are modulated simultaneously. We show using nano-antenna theory that this photonic nanostructure is essential to realize 2D beam scanning lasers with high output power and high beam quality. We also fabricate an on-chip, circuit-driven array of dually modulated photonic-crystal lasers with a 10 × 10 matrix configuration having 100 resolvable points. Our device enables the scanning of laser beams over a wide range of 2D directions in sequence and in parallel, and can be flexibly designed to meet application-specific demands.

12.
Nat Mater ; 18(2): 121-128, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559412

RESUMEN

Achieving high brightness (where brightness is defined as optical power per unit area per unit solid angle) in semiconductor lasers is important for various applications, including direct-laser processing and light detection and ranging for next-generation smart production and mobility. Although the brightness of semiconductor lasers has been increased by the use of edge-emitting-type resonators, their brightness is still one order of magnitude smaller than that of gas and solid-state/fibre lasers, and they often suffer from large beam divergence with strong asymmetry and astigmatism. Here, we develop a so-called 'double-lattice photonic crystal', where we superimpose two photonic lattice groups separated by one-quarter wavelength in the x and y directions. Using this resonator, an output power of 10 W with a very narrow-divergence-angle (<0.3°) symmetric surface-emitted beam is achieved from a circular emission area of 500 µm diameter under pulsed conditions, which corresponds to a brightness of over 300 MW cm-2 sr-1. In addition, an output power up to ~7 W is obtained under continuous-wave conditions. Detailed analyses on the double-lattice structure indicate that the resonators have the potential to realize a brightness of up to 10 GW cm-2 sr-1, suggesting that compact, affordable semiconductor lasers will be able to rival existing gas and fibre/disk lasers.

13.
Appl Opt ; 57(19): 5295-5298, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117817

RESUMEN

The passively Q-switched operation of a cryogenically cooled Yb:YAG/Cr:YAG microchip laser was demonstrated with end pumping by a photonic crystal surface emitting laser (PCSEL). This laser generated 70 µJ/1.7 ns/3.2 kHz pulses with near diffraction limited beam quality (M2=1.1) at 1029.4 nm. There were no coupling optics between the microchip laser crystal and PCSEL, which made the system simple and compact.

14.
Opt Lett ; 41(20): 4653-4655, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28005859

RESUMEN

We developed a cryogenically cooled Yb:YAG continuous wave oscillator directly pumped with a photonic crystal surface-emitting laser (PCSEL). A high slope efficiency of 65.7% was obtained at an output power of 208 mW. The beam quality was close to the diffraction limit, with M2<1.2 in both directions. To the best of our knowledge, this is the first PCSEL pumped solid state laser to be developed.

15.
Opt Express ; 24(12): 13518-26, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410368

RESUMEN

We investigate the radiation angle of an oblique waveguide in a stripe-stacked three-dimensional photonic crystal. We show that the output-light is radiated in a different direction from the oblique waveguide direction. Moreover, the radiation polar angle varies from 30° to 50° depending on the frequency. To inhibit the frequency dependence and obtain vertical radiation, we introduced a symmetric structure at the end of the waveguide. As a result of cancellation of the in-plane asymmetric wavenumber, the radiation polar angle is less than 6° from the surface-normal direction and does not depend on frequency.

16.
Opt Express ; 23(15): A896-902, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367689

RESUMEN

We carry out the structural design of photonic crystals (PCs) using sensitivity analysis for enhancing optical absorption of thin film microcrystalline silicon (µc-Si) solar cells. In this paper, we employ a model which includes absorption of not only the thin film µc-Si, but also the transparent conductive oxide and metal back reflector for design accuracy. We carry out structural design for this model using sensitivity analysis which maximizes optical absorption in µc-Si layer. As a result, we succeed in obtaining the maximum short circuit current density of 25.2 mA/cm2 for thin film (600-nm thick) µc-Si solar cells (1.4-fold increase compared to the case without a PC).

17.
Opt Express ; 23(19): A1040-50, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406734

RESUMEN

We investigate the improvement of the conversion efficiency of ultra-thin (~500nm-thick) microcrystalline silicon (µc-Si) solar cells incorporating photonic-crystal structures, where light absorption is strongly enhanced by the multiple resonant modes in the photonic crystal. We focus on the quality of the intrinsic µc-Si layer deposited on the substrate, which is structured to form a photonic crystal at its upper surface with a period of several hundred nanometers. We first study the crystalline quality from the viewpoint of the crystalline fraction and show that the efficiency can be improved when the deposition conditions for the µc-Si layer are tuned to give an almost constant crystalline fraction of ~50% across the entire film. We then study the influence of the photonic-crystal structure on the crystalline quality. From transmission-electron microscope images, we show that the collision of µc-Si grains growing at different angles occurs when a photonic-crystal structure with an angular surface is used; this can be suppressed by introducing a rounded surface structure. As a result, we demonstrate an efficiency of 8.7% in a ~500-nm thick, homo-junction µc-Si solar cell, which has only ~1/4 the thickness of typical µc-Si solar cells. We also discuss the possibility of further improving the efficiency by performing calculations that focus on the absorption characteristics of the fabricated cell structure.

18.
Opt Express ; 22(14): 17099-106, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090524

RESUMEN

We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 µm, where further fine structures are required.

19.
Opt Express ; 21(9): 10590-6, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23669914

RESUMEN

We investigate nanocavities at the surface of three-dimensional (3D) photonic crystals, where the polarization-independent surface-mode gap can be utilized. We consider the formation of various nanocavities by introducing artificial defects utilizing the 3D structures around the surface and discuss the possibilities for increasing the Q-factors of the surface nanocavities with TE-like polarization based on the advanced designs of donor-type defects. We also introduce the design of acceptor-type defects and show that TM-like nanocavities are obtained. We then fabricate the designed nanocavities and examine their resonant characteristics; we successfully demonstrate TE-like nanocavities with Q-factors of ~40,000, which is four-times higher than previous surface cavities and as high as that of the cavities embedded inside 3D photonic crystals. TM-like nanocavities with Q-factors of ~22,000 are also demonstrated for the first time.


Asunto(s)
Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Propiedades de Superficie
20.
Opt Express ; 21(1): 565-80, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388950

RESUMEN

Three-dimensional coupled-wave theory is extended to model triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization. A generalized coupled-wave equation is derived to describe the sixfold symmetry of the eigenmodes in a triangular lattice. The extended theory includes the effects of both surface radiation and in-plane losses in a finite-size laser structure. Modal properties of interest including the band structure, radiation constant, threshold gain, field intensity profile, and far-field pattern (FFP) are calculated. The calculated band structure and FFP, as well as the predicted lasing mode, agree well with experimental observations. The effect of air-hole size on mode selection is also studied and confirmed by experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...