Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Open Bio ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604990

RESUMEN

The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, ß-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/ß-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.

2.
Biochem Biophys Res Commun ; 695: 149394, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157629

RESUMEN

In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.


Asunto(s)
Factores Despolimerizantes de la Actina , Actinas , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Movimiento Celular , Mitosis , Células Epiteliales/metabolismo , Quinasas Lim/genética , Fosforilación
3.
Commun Biol ; 5(1): 982, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114357

RESUMEN

Topoisomerase I (TOP1) controls the topological state of DNA during DNA replication, and its dysfunction due to treatment with an inhibitor, such as camptothecin (CPT), causes replication arrest and cell death. Although CPT has excellent cytotoxicity, it has the disadvantage of instability under physiological conditions. Therefore, new types of TOP1 inhibitor have attracted particular attention. Here, we characterised the effect of a non-camptothecin inhibitor, Genz-644282 (Genz). First, we found that treatment with Genz showed cytotoxicity by introducing double-strand breaks (DSBs), which was suppressed by co-treatment with aphidicolin. Genz-induced DSB formation required the functions of TOP1. Next, we explored the advantages of Genz over CPT and found it was effective against CPT-resistant TOP1 carrying either N722S or N722A mutation. The effect of Genz was also confirmed at the cellular level using a CPT-resistant cell line carrying N722S mutation in the TOP1 gene. Moreover, we found arginine residue 364 plays a crucial role for the binding of Genz. Because tyrosine residue 723 is the active centre for DNA cleavage and re-ligation by TOP1, asparagine residue 722 plays crucial roles in the accessibility of the drug. Here, we discuss the mechanism of action of Genz on TOP1 inhibition.


Asunto(s)
Camptotecina , ADN-Topoisomerasas de Tipo I , Afidicolina , Arginina , Asparagina , Camptotecina/farmacología , ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Naftiridinas , Tirosina
4.
Cell Death Discov ; 8(1): 278, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672286

RESUMEN

In cells, mRNA synthesis and decay are influenced by each other, and their balance is altered by either external or internal cues, resulting in changes in cell dynamics. We previously reported that it is important that an array of mRNAs that shape a phenotype are degraded before cellular transitions, such as cellular reprogramming and differentiation. In adipogenesis, the interaction between DDX6 and 4E-T had a definitive impact on the pathway in the processing body (PB). We screened a library of α-helix analogs with an alkaloid-like backbone to identify compounds that inhibit the binding between DDX6 and 4E-T proteins, which occurs between the α-helix of structured and internally disordered proteins. IAMC-00192 was identified as a lead compound. This compound directly inhibited the interaction between DDX6 and 4E-T. IAMC-00192 inhibited the temporal increase in PB formation that occurs during adipogenesis and epithelial-mesenchymal transition (EMT) and significantly suppressed these cellular transitions. In the EMT model, the half-life of preexisting mRNAs in PBs was extended twofold by the compound. The novel inhibitor of RNA decay not only represents a potentially useful tool to analyze in detail the pathological conditions affected by RNA decay and how it regulates the pathological state. The identification of this inhibitor may lead to the discovery of a first-in-class RNA decay inhibitor drug.

5.
Heliyon ; 8(2): e08890, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198763

RESUMEN

Wnt/ß-catenin is believed to regulate different sets of genes with different coactivators, cAMP response element-binding protein (CREB)-binding protein (CBP) or p300. However, the factors that determine which coactivators act on a particular promoter remain elusive. ICG-001 is a specific inhibitor for ß-catenin/CBP but not for ß-catenin/p300. By taking advantage of the action of ICG-001, we sought to investigate regulatory mechanisms underlying ß-catenin coactivator usage in human pancreatic carcinoma PANC-1 cells through combinatorial analysis of chromatin immunoprecipitation-sequencing and RNA-sequencing. CBP and p300 preferentially bound to regions with the TCF motif alone and with both the TCF and AP-1 motifs, respectively. ICG-001 increased ß-catenin binding to regions with both the TCF and AP-1 motifs, flanking the genes induced by ICG-001, concomitant with the increments of the p300 and AP-1 component c-JUN binding. Taken together, AP-1 possibly coordinates ß-catenin coactivator usage in PANC-1 cells. These results would further our understanding of the canonical Wnt/ß-catenin signaling divergence.

6.
Sci Rep ; 11(1): 7718, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833336

RESUMEN

DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Berberina/análogos & derivados , Berberina/farmacología , Camptotecina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/genética , Medicina de Hierbas , Humanos
7.
Cardiovasc Res ; 117(4): 1103-1117, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32647865

RESUMEN

AIMS: Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. METHODS AND RESULTS: Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10-12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy-related genes, including immediate early genes, in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the filamentous/globular (F/G)-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors and serum response factor were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. CONCLUSION: mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Citoesqueleto de Actina/ultraestructura , Anciano , Anciano de 80 o más Años , Animales , Aorta/fisiopatología , Aorta/cirugía , Presión Arterial , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Forminas/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Ligadura , Masculino , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Miocitos Cardíacos/ultraestructura , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
8.
Methods Mol Biol ; 2119: 89-99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31989517

RESUMEN

Double-strand DNA break (DSB) formation is a key feature of apoptosis called chromosomal DNA fragmentation. However, some apoptosis inducers introduce DNA damage-induced DSBs prior to induction of apoptotic chromosomal DNA fragmentation. To analyze these distinct breaks, we have developed a method using pulsed-field gel electrophoresis (PFGE) with a rotating gel electrophoresis system (RGE) that enables us to distinguish between apoptotic DSBs and DNA damaging agent-induced DSBs based on their mobility in the electrophoresis gel. Apoptotic DSBs appear as smeared low-molecular weight bands (less than 500 kb), while damage-induced DSBs result in a compact single band (more than 500 kb). Furthermore, using a caspase inhibitor, Z-VAD-FMK, we can confirm whether broken DNA fragments are produced as part of an apoptotic response. Overall, we succeeded in characterizing two individual apoptosis inducers and showed the different effects of those compounds on the induction of DNA breaks.


Asunto(s)
Apoptosis , Cromosomas Humanos , Roturas del ADN de Doble Cadena , Fragmentación del ADN , Electroforesis en Gel de Campo Pulsado , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Células HeLa , Humanos
9.
Biol Pharm Bull ; 42(9): 1532-1537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474712

RESUMEN

Glucose-stimulated insulin secretion is controlled by both exocytosis and endocytosis in pancreatic ß-cells. Although endocytosis is a fundamental step to maintain cellular responses to the secretagogue, the molecular mechanism of endocytosis remains poorly defined. We have previously shown that in response to high concentrations of glucose, guanosine 5'-diphosphate (GDP)-bound Rab27a is recruited to the plasma membrane where IQ motif-containing guanosine 5'-triphosphatase (GTPase)-activating protein 1 (IQGAP1) is expressed, and that complex formation promotes endocytosis of secretory membranes after insulin secretion. In the present study, the regulatory mechanisms of dissociation of the complex were investigated. Phosphorylation of IQGAP1 on serine (Ser)-1443, a site recognized by protein kinase Cε (PKCε), inhibited the interaction of GDP-bound Rab27a with IQGAP1 in a Cdc42-independent manner. Glucose stimulation caused a translocation of PKCε from the cytosol to the plasma membrane. In addition, glucose-induced endocytosis was inhibited by the knockdown of IQGAP1 with small interfering RNA (siRNA). However, the expression of the non-phosphorylatable or phosphomimetic form of IQGAP1 could not rescue the inhibition, suggesting that a phosphorylation-dephosphorylation cycle of IQGAP1 is required for endocytosis. These results suggest that IQGAP1 phosphorylated by PKCε promotes the dissociation of the IQGAP1-GDP-bound Rab27a complex in pancreatic ß-cells, thereby regulating endocytosis of secretory membranes following insulin secretion.


Asunto(s)
Endocitosis , Guanosina Difosfato/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Sitios de Unión , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Glucosa/farmacología , Proteínas Fluorescentes Verdes/genética , Guanosina Difosfato/genética , Inmunoprecipitación , Células Secretoras de Insulina/efectos de los fármacos , Fosforilación , Unión Proteica , Proteínas rab27 de Unión a GTP/genética , Proteínas Activadoras de ras GTPasa/genética
10.
J Pharmacol Sci ; 140(3): 300-304, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31353211

RESUMEN

Endocytosis after insulin secretion plays a pivotal role in the regulation of insulin secretion in pancreatic ß-cells. Our recent study suggested that EPI64, a GTPase activating protein for Rab27a, contributes to the regulation of glucose-induced endocytosis, which is mediated by the GDP-bound form of Rab27a. Here, we identified insulin receptor-related receptor (IRR) as an EPI64-interacting protein. Knockdown of IRR inhibited glucose-induced uptake of transferrin, a marker of endocytosis, translocation of the guanine-nucleotide-exchange factor ARNO to the plasma membrane, and generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). These results suggest that IRR functions upstream of PIP3 generation and controls endocytosis after insulin secretion.


Asunto(s)
Endocitosis/fisiología , Glucosa/metabolismo , Secreción de Insulina/fisiología , Insulina/metabolismo , Receptor de Insulina/metabolismo , Animales , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo
11.
Genes Cells ; 23(6): 466-479, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29667279

RESUMEN

During tumor invasion, cancer cells change their morphology and mode of migration based on communication with the surrounding environment. Numerous studies have indicated that paracrine interactions from non-neoplastic cells impact the migratory and invasive properties of cancer cells. Thus, these interactions are potential targets for anticancer therapies. In this study, we showed that the flavones member baicalein suppresses the motility of breast cancer cells that is promoted by paracrine interactions. First, we identified laminin-332 (LN-332) as a principle paracrine factor in conditioned medium from mammary epithelium-derived MCF10A cells that regulates the morphology and motility of breast adenocarcinoma MDA-MB-231 cells. Then, we carried out a morphology-based screen for small compounds, which showed that baicalein suppressed the morphological changes and migratory activity of MDA-MB-231 cells that were induced by conditioned medium from MCF10A cells and LN-332. We also found that baicalein caused narrower and incomplete lamellipodia formation in conditioned medium-treated MDA-MB-231 cells, although actin dynamics downstream of Rho family small GTPases were unaffected. These results suggest the importance of mammary epithelial cells in the cancer microenvironment promoting the migratory activity of breast adenocarcinoma cells and show a novel mechanism through which baicalein inhibits cancer cell motility.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Flavanonas/farmacología , Microambiente Tumoral/efectos de los fármacos , Adenocarcinoma/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Humanos , Comunicación Paracrina , Seudópodos/patología
12.
J Cell Sci ; 129(3): 637-49, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26683831

RESUMEN

In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic ß-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic ß-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Endocitosis/fisiología , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Células COS , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Exocitosis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología , Proteínas rab27 de Unión a GTP
13.
Biol Pharm Bull ; 38(5): 663-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25947911

RESUMEN

Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Glucosa/metabolismo , Humanos , Secreción de Insulina , Proteínas rab27 de Unión a GTP
14.
World J Diabetes ; 6(3): 508-16, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25897360

RESUMEN

The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic ß-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the ß-cell volume constant.

15.
Nitric Oxide ; 46: 32-6, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25461273

RESUMEN

Hydrogen sulfide (H2S) is recognized as a third gaseous signaling molecule behind nitric oxide (NO) and carbon monoxide (CO). In pancreatic beta-cells, H2S inhibits glucose-induced insulin release. There are multiple underlying mechanisms for this inhibitory process. Apart from these inhibitory effects, H2S also protects pancreatic islets from apoptotic cell death induced by high glucose. Moreover, expression of the H2S-producing enzyme, cystathionine γ-lyase (CSE), is induced by glucose stimulation. These observations suggest that H2S is produced in an inducible manner, as are the other two gaseous signaling molecules, NO and CO. We recently reported that a lack of CSE induces apoptotic beta-cell death and promotes the development of high-fat diet (HFD)-induced diabetes. These findings tempt us to suggest that H2S produced by CSE is part of a homeostatic mechanism used by pancreatic beta-cells to inhibit insulin release and reduce cellular stress evoked by glucose, possibly via the anti-oxidant properties of H2S.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Cistationina gamma-Liasa/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo
16.
Cell Rep ; 5(4): 926-32, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24239357

RESUMEN

The small GTPase Rho and mDia2, a Rho-regulated actin nucleator, function as critical regulators of cytokinesis in cultured cells. However, their involvement in cytokinesis during mammalian development remains unknown. Here, we generated mice deficient in mDia2 and examined the role of Rho signaling in cytokinesis during development. mDia2-deficient mice survive until embryonic day 11.5 (E11.5), exhibit severe anemia with multinucleate erythroblasts, and die in utero by E12.5. mDia2-deficient erythroid cells differentiate normally, though in a delayed manner, but exhibit cytokinesis failure with decreased accumulation of F-actin in the cleavage furrow during late differentiation from proerythroblasts. On the other hand, inactivation of Rho induces cytokinesis failure from the earlier progenitor stage. mDia2-deficient erythroblasts, however, are able to enucleate their nuclei. Our findings have thus revealed that mDia2 functions critically in cytokinesis in vivo during erythropoiesis and further suggest that the cytokinesis mechanism in development diverges downstream of Rho. They also demonstrate that cytokinesis and enucleation utilize different mechanisms.


Asunto(s)
Citocinesis/genética , Embrión de Mamíferos/fisiología , Eritropoyesis/genética , Proteínas Asociadas a Microtúbulos/genética , NADPH Deshidrogenasa/genética , Proteínas de Unión al GTP rho/genética , Actinas , Animales , Núcleo Celular , Células Cultivadas , Citocinesis/fisiología , Eritroblastos/citología , Humanos , Ratones , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño
17.
Biochem Biophys Res Commun ; 442(3-4): 227-33, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24246677

RESUMEN

Chronic exposure to high glucose induces the expression of cystathionine gamma-lyase (CSE), a hydrogen sulfide-producing enzyme, in pancreatic beta-cells, thereby suppressing apoptosis. The aim of this study was to examine the effects of hydrogen sulfide on the onset and development of type 2 diabetes. Middle-aged (6-month-old) wild-type (WT) and CSE knockout (CSE-KO) mice were fed a high-fat diet (HFD) for 8weeks. We determined the effects of CSE knockout on beta-cell function and mass in islets from these mice. We also analyzed changes in gene expression in the islets. After 8weeks of HFD, blood glucose levels were markedly increased in middle-aged CSE-KO mice, insulin responses were significantly reduced, and DNA fragmentation of the islet cells was increased. Moreover, expression of thioredoxin binding protein-2 (TBP-2, also known as Txnip) was increased. Administration of NaHS, a hydrogen sulfide donor, reduced TBP-2 gene levels in isolated islets from CSE-KO mice. Gene levels were elevated when islets were treated with the CSE inhibitor dl-propargylglycine (PPG). These results provide evidence that CSE-produced hydrogen sulfide protects beta-cells from glucotoxicity via regulation of TBP-2 expression levels and thus prevents the onset/development of type 2 diabetes.


Asunto(s)
Citoprotección , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Células Secretoras de Insulina/patología , Animales , Proteínas Portadoras/genética , Cistationina gamma-Liasa/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expresión Génica , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Tiorredoxinas/genética
18.
Mol Cell Biol ; 33(24): 4834-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24100016

RESUMEN

Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.


Asunto(s)
Endocitosis , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Células COS , Línea Celular Tumoral , Membrana Celular/metabolismo , Chlorocebus aethiops , Glucosa/fisiología , Guanosina Difosfato/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/metabolismo , Páncreas/metabolismo , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
19.
Genes Cells ; 18(10): 873-85, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23890216

RESUMEN

mDia is an actin nucleator and polymerization factor regulated by the small GTPase Rho and consists of three isoforms. Here, we found that mice lacking mDia1 and mDia3, two isoforms expressed in the brain, in combination (mDia-DKO mice) show impaired left-right limb coordination during locomotion and aberrant midline crossing of axons of corticospinal neurons and spinal cord interneurons. Given that mice lacking Ephrin-B3-EphA4 signaling show a similar impairment in locomotion, we examined whether mDia is involved in Ephrin-B3-EphA4 signaling for axon repulsion. In primary cultured neurons, mDia deficiency impairs growth cone collapse and axon retraction induced by chemo-repellants including EphA ligands. In mDia-DKO mice, the Ephrin-B3-expressing midline structure in the spinal cord is disrupted, and axons aberrantly cross the spinal cord midline preferentially through the region devoid of Ephrin-B3. Therefore, mDia plays multiple roles in the proper formation of the neural network in vivo.


Asunto(s)
Axones/fisiología , Proteínas Portadoras/fisiología , Efrina-B3/metabolismo , Médula Espinal/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Miembro Anterior/fisiología , Forminas , Marcha/fisiología , Miembro Posterior/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Receptor EphA4/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología
20.
J Cell Sci ; 126(Pt 8): 1773-84, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23444367

RESUMEN

Cytokinesis is initiated by constriction of the cleavage furrow, and completed with separation of the two daughter cells by abscission. Control of transition from constriction to abscission is therefore crucial for cytokinesis. However, the underlying mechanism is largely unknown. Here, we analyze the role of Citron kinase (Citron-K) that localizes at the cleavage furrow and the midbody, and dissect its action mechanisms during this transition. Citron-K forms a stable ring-like structure at the midbody and its depletion affects the maintenance of the intercellular bridge, resulting in fusion of two daughter cells after the cleavage furrow ingression. RNA interference (RNAi) targeting Citron-K reduced accumulation of RhoA, Anillin, and septins at the intercellular bridge in mid telophase, and impaired concentration and maintenance of KIF14 and PRC1 at the midbody in late telophase. RNAi rescue experiments revealed that these functions of Citron-K are mediated by its coiled-coil (CC) domain, and not by its kinase domain. The C-terminal part of CC contains a Rho-binding domain and a cluster-forming region and is important for concentrating Citron-K from the cleavage furrow to the midbody. The N-terminal part of CC directly binds to KIF14, and this interaction is required for timely transfer of Citron-K to the midbody after furrow ingression. We propose that the CC-domain-mediated translocation and actions of Citron-K ensure proper stabilization of the midbody structure during the transition from constriction to abscission.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Proteínas Contráctiles/metabolismo , Citocinesis/genética , Citocinesis/fisiología , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Septinas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...