Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 72(5): 1795-1808, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33258952

RESUMEN

Light and high temperature promote plant cell elongation. PHYTOCHROME INTERACTING FACTOR4 (PIF4, a typical basic helix-loop-helix [bHLH] transcriptional activator) and the non-DNA binding atypical HLH inhibitors PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and LONG HYPOCOTYL IN FAR-RED 1 (HFR1) competitively regulate cell elongation in response to light conditions and high temperature. However, the underlying mechanisms have not been fully clarified. Here, we show that in Arabidopsis thaliana, the bHLH transcription factor CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1 (CIB1) positively regulates cell elongation under the control of PIF4, PAR1, and HFR1. Furthermore, PIF4 directly regulates CIB1 expression by interacting with its promoter, and PAR1 and HFR1 interfere with PIF4 binding to the CIB1 promoter. CIB1 activates genes that function in cell elongation, and PAR1 interferes with the DNA binding activity of CIB1, thus suppressing cell elongation. Hence, two antagonistic HLH/bHLH systems, the PIF4-PAR1/HFR1 and CIB1-PAR1 systems, regulate cell elongation in response to light and high temperature. We thus demonstrate the important role of non-DNA binding small HLH proteins in the transcriptional regulation of cell elongation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Calor , Hipocótilo/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz
2.
Neuromolecular Med ; 22(1): 139-149, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31595404

RESUMEN

Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.


Asunto(s)
Células-Madre Neurales/efectos de la radiación , Neurogénesis/efectos de la radiación , Optogenética , Señalización del Calcio , Línea Celular Transformada , Channelrhodopsins/biosíntesis , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Elementos Transponibles de ADN , Regulación de la Expresión Génica/efectos de la radiación , Ontología de Genes , Genes Reporteros , Genes fos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Plasticidad Neuronal/efectos de la radiación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
3.
Adv Mater ; 31(41): e1803474, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432555

RESUMEN

Optogenetics is an optical technique that exploits visible light for selective neuromodulation with spatio-temporal precision. Despite enormous effort, the effective stimulation of targeted neurons, which are located in deeper structures of the nervous system, by visible light, remains a technical challenge. Compared to visible light, near-infrared illumination offers a higher depth of tissue penetration owing to a lower degree of light attenuation. Herein, an overview of advances in developing new modalities for neural circuitry modulation utilizing upconversion-nanoparticle-mediated optogenetics is presented. These developments have led to minimally invasive optical stimulation and inhibition of neurons with substantially improved selectivity, sensitivity, and spatial resolution. The focus is to provide a comprehensive review of the mechanistic basis for evaluating upconversion parameters, which will be useful in designing, executing, and reporting optogenetic experiments.


Asunto(s)
Nanomedicina/métodos , Nanopartículas , Fenómenos Fisiológicos del Sistema Nervioso/genética , Optogenética/métodos , Animales , Humanos
4.
Sci Rep ; 9(1): 3917, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850696

RESUMEN

We investigated the relationship between whisker mechanoreceptive inputs and the neural responses to optical stimulation in layer 2/upper 3 (L2/U3) of the barrel cortex using optogenetics since, ideally, we should investigate interactions among inputs with spatiotemporal acuity. Sixteen whisker points of a transgenic rat (W-TChR2V4), that expresses channelrhodopsin 2 (ChR2)-Venus conjugate (ChR2V) in the peripheral nerve endings surrounding the whisker follicles, were respectively connected one-by-one with 16 LED-coupled optical fibres, which illuminated the targets according to a certain pattern in order to evaluate interactions among the inputs in L2/U3. We found that the individual L2/U3 neurons frequently received excitatory inputs from multiple whiskers that were arrayed in a row. Although the interactions among major afferent inputs (MAIs) were negligible, negative interactions with the surrounding inputs suggest that the afferent inputs were integrated in the cortical networks to enhance the contrast of an array to its surroundings. With its simplicity, reproducibility and spatiotemporal acuity, the optogenetic approach would provide an alternative way to understand the principles of afferent integration in the cortex and should complement knowledge obtained by experiments using more natural stimulations.


Asunto(s)
Optogenética/métodos , Corteza Somatosensorial/fisiología , Animales , Femenino , Luz , Masculino , Mecanorreceptores/citología , Mecanorreceptores/fisiología , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Optogenética/instrumentación , Estimulación Física , Ratas , Ratas Transgénicas , Corteza Somatosensorial/citología , Vibrisas/inervación
5.
J Physiol Sci ; 69(1): 65-77, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29761270

RESUMEN

To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input-output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 µm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.


Asunto(s)
Corteza Somatosensorial/fisiología , Animales , Calcio/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Optogenética/métodos , Corteza Somatosensorial/metabolismo
6.
Front Neurosci ; 12: 561, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174581

RESUMEN

As one of the ubiquitous second messengers, the intracellular Ca2+, has been revealed to be a pivotal regulator of various cellular functions. Two major sources are involved in the initiation of Ca2+-dependent signals: influx from the extracellular space and release from the intracellular Ca2+ stores such as the endoplasmic/sarcoplasmic reticulum (ER/SR). To manipulate the Ca2+ release from the stores under high spatiotemporal precision, we established a new method termed "organelle optogenetics." That is, one of the light-sensitive cation channels (channelrhodopsin-green receiver, ChRGR), which is Ca2+-permeable, was specifically targeted to the ER/SR. The expression specificity as well as the functional operation of the ER/SR-targeted ChRGR (ChRGRER) was evaluated using mouse skeletal myoblasts (C2C12): (1) the ChRGRER co-localized with the ER-marker KDEL; (2) no membrane current was generated by light under whole-cell clamp of cells expressing ChRGRER; (3) an increase of fluorometric Ca2+ was evoked by the optical stimulation (OS) in the cells expressing ChRGRER in a manner independent on the extracellular Ca2+ concentration ([Ca2+]o); (4) the ΔF/F0 was sensitive to the inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and (5) the store-operated Ca2+ entry (SOCE) was induced by the OS in the ChRGRER-expressing cells. Our organelle optogenetics effectively manipulated the ER/SR to release Ca2+ from intracellular stores. The use of organelle optogenetics would reveal the neuroscientific significance of intracellular Ca2+ dynamics under spatiotemporal precision.

7.
Biochemistry ; 57(38): 5544-5556, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30153419

RESUMEN

As optogenetic studies become more popular, the demand for red-shifted channelrhodopsin is increasing, because blue-green light is highly scattered or absorbed by animal tissues. In this study, we developed a red-shifted channelrhodopsin by elongating the conjugated double-bond system of the native chromophore, all -trans-retinal (ATR1). Analogues of ATR1 and ATR2 (3,4-didehydro-retinal) in which an extra C═C bond is inserted at different positions (C6-C7, C10-C11, and C14-C15) were synthesized and introduced into a widely used channelrhodopsin variant, C1C2 (a chimeric protein of channelrhodopsin-1 and channelrhodopsin-2 from Chlamydomonas reinhardtii). C1C2 bearing these retinal analogues as chromophores showed broadened absorption spectra toward the long-wavelength side and photocycle intermediates similar to the conducting state of channelrhodopsin. However, the position of methyl groups on the retinal polyene chain influenced the yield of the pigment, absorption maximum, and photocycle pattern to a variable degree. The lack of a methyl group at position C9 of the analogues considerably decreased the yield of the pigment, whereas a methyl group at position C15 exhibited a large red-shift in the absorption spectra of the C1C2 analogue. Expansion of the chromophore binding pocket by mutation of aromatic residue Phe265 to Ala improved the yield of the pigment bearing elongated ATR1 analogues without a great alteration of the photocycle kinetics of C1C2. Our results show that elongation of the conjugated double-bond system of retinal is a promising strategy for improving the ability of channelrhodopsin to absorb long-wavelength light passing through the biological optical window.


Asunto(s)
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Retinaldehído/análogos & derivados , Retinaldehído/metabolismo , Animales , Channelrhodopsins/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica
8.
Sci Rep ; 8(1): 5435, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615713

RESUMEN

Rats are excellent animal models for experimental neuroscience. However, the application of optogenetics in rats has been hindered because of the limited number of established transgenic rat strains. To accomplish cell-type specific targeting of an optimized optogenetic molecular tool, we generated ROSA26/CAG-floxed STOP-ChRFR(C167A)-Venus BAC rats that conditionally express the step-function mutant channelrhodopsin ChRFR(C167A) under the control of extrinsic Cre recombinase. In primary cultured cortical neurons derived from this reporter rat, only Cre-positive cells expressing ChRFR(C167A) became bi-stable, that is, their excitability was enhanced by blue light and returned to the baseline by yellow~red light. In bigenic pups carrying the Phox2B-Cre driver, ChRFR(C167A) was specifically expressed in the rostral parafacial respiratory group (pFRG) in the medulla, where endogenous Phox2b immunoreactivity was detected. These neurons were sensitive to blue light with an increase in the firing frequency. Thus, this transgenic rat actuator/reporter system should facilitate optogenetic studies involving the effective in vivo manipulation of the activities of specific cell fractions using light of minimal intensity.


Asunto(s)
Opsinas/genética , Optogenética/métodos , Animales , Expresión Génica , Genes Reporteros/genética , Ratas , Ratas Transgénicas
9.
Methods Mol Biol ; 1668: 135-145, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842907

RESUMEN

Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.


Asunto(s)
Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/fisiología , Mioblastos/fisiología , Optogenética/métodos , Animales , Línea Celular , Luz , Potenciales de la Membrana , Ratones , Contracción Muscular , Imagen Óptica , Plásmidos , Cultivo Primario de Células , Sarcómeros/fisiología
10.
PLoS One ; 12(7): e0179232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28749956

RESUMEN

Sodium pumping rhodopsins (NaRs) are a unique member of the microbial-type I rhodopsin family which actively transport Na+ and H+ depending on ionic condition. In this study, we surveyed 12 different NaRs from various sources of eubacteria for their electrophysiological as well as spectroscopic properties. In mammalian cells several of these NaRs exhibited a Na+ based pump photocurrent and four interesting candidates were chosen for further characterization. Voltage dependent photocurrent amplitudes revealed a membrane potential-sensitive turnover rate, indicating the presence of an electrically-charged intermediate(s) in the photocycle reaction. The NaR from Salinarimonas rosea DSM21201 exhibited a red-shifted absorption spectrum, and slower kinetics compared to the first described sodium pump, KR2. Although the ratio of Na+ to H+ ion transport varied among the NaRs we tested, the NaRs from Flagellimonas sp_DIK and Nonlabens sp_YIK_SED-11 showed significantly higher Na+ selectivity when compared to KR2. All four further investigated NaRs showed a functional expression in dissociated hippocampal neuron culture and hyperpolarizing activity upon light-stimulation. Additionally, all four NaRs allowed optical inhibition of electrically-evoked neuronal spiking. Although efficiency of silencing was 3-5 times lower than silencing with the enhanced version of the proton pump AR3 from Halorubrum sodomense, our data outlines a new approach for hyperpolarization of excitable cells without affecting the intracellular and extracellular proton environment.


Asunto(s)
Rodopsina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células Cultivadas , Silenciador del Gen , Humanos , Ratones , Optogenética , Ratas Sprague-Dawley , Análisis Espectral
11.
Chem Pharm Bull (Tokyo) ; 65(4): 356-358, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28381675

RESUMEN

Red-shifted channelrhodopsins (ChRs) are attractive for optogenetic tools. We developed a new type of red-shifted ChRs that utilized noncovalent incorporation of retinal and 3,4-dehydroretinal-based enamine-type Schiff bases and mutated channelopsin, C1C2-K296G. These ChRs exhibited absorption maxima that were shifted 10-30 nm toward longer wavelengths than that of C1C2-ChR regenerated with all-trans-retinal.


Asunto(s)
Retinaldehído/química , Rodopsina/síntesis química , Tretinoina/química , Estructura Molecular , Rodopsina/química , Bases de Schiff/química
12.
Biophys Physicobiol ; 14: 13-22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28409086

RESUMEN

Channelrhodopsin (ChR)-1 and ChR2 were the first-identified members of ChRs which are a growing subfamily of microbial-type rhodopsins. Light absorption drives the generation of a photocurrent in cell membranes expressing ChR2. However, the photocurrent amplitude attenuates and becomes steady-state during prolonged irradiation. This process, called desensitization or inactivation, has been attributed to the accumulation of intermediates less conductive to cations. Here we provided evidence that the dark-adapted (DA) photocurrent before desensitization is kinetically different from the light-adapted (LA) one after desensitization, that is, the deceleration of both basal-to-conductive and conductive-to-basal transitions. When the kinetics were compared between the DA and LA photocurrents for the ChR1/2 chimeras, the transmembrane helices, TM1 and TM2, were the determinants of both basal-to-conductive and conductive-to-basal transitions, whereas TM4 may contribute to the basal-to-conductive transitions and TM5 may contribute to the conductive-to-basal transitions, respectively. The fact that the desensitization-dependent decrease of the basal-to-conductive and conductive-to-basal transitions was facilitated by the TM1 exchange from ChR2 to ChR1 and reversed by the further TM2 exchange suggests that the conformation change for the channel gating is predominantly regulated by the interaction between TM1 and TM2. Although the exchange of TM1 from ChR2 to ChR1 showed no obvious influence on the spectral sensitivity, this exchange significantly induced the desensitization-dependent blue shift. Therefore, the TM1 and 2 are the main structures involved in two features of the desensitization, the stabilization of protein conformation and the charge distribution around the retinal-Schiff base (RSB+).

13.
PLoS One ; 11(11): e0166820, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861619

RESUMEN

With the progress of optogenetics, the activities of genetically identified neurons can be optically silenced to determine whether the neurons in question are necessary for the network performance of the behavioral expression. This logical induction is expected to be improved by the application of the Na+ pump rhodopsins (NaRs), which hyperpolarize the membrane potential with negligible influence on the ionic/pH balance. Here, we made several chimeric NaRs between two NaRs, KR2 and IaNaR from Krokinobacter eikastus and Indibacter alkaliphilus, respectively. We found that one of these chimeras, named I1K6NaR, exhibited some improvements in the membrane targeting and photocurrent properties over native NaRs. The I1K6NaR-expressing cortical neurons were stably silenced by green light irradiation for a certain long duration. With its rapid kinetics and voltage dependency, the photoactivation of I1K6NaR would specifically counteract the generation of action potentials with less hyperpolarization of the neuronal membrane potential than KR2.


Asunto(s)
Optogenética , Rodopsina/genética , Rodopsina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Línea Celular , Cytophaga/genética , Cytophaga/metabolismo , Fenómenos Electrofisiológicos , Expresión Génica , Iones/metabolismo , Luz , Potenciales de la Membrana/efectos de la radiación , Neuronas/metabolismo , Neuronas/efectos de la radiación , Ratas , Rodopsina/química
14.
Sci Rep ; 6: 27888, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27292818

RESUMEN

Neural reflexes are stereotypical automatic responses often modulated by both intrinsic and environmental factors. We report herein that zebrafish larval C-shaped turning is modulated by the stimulated position of Rohon-Beard (RB) neurons. Targeted stimulation of more anterior RB neurons produces larger trunk flexion, which anticipates adult escape behavior by coordinated turning toward the appropriate direction. We also demonstrated that turning laterality varies with the numbers of stimulated neurons. Multi-cell stimulation of RB neurons elicits contralateral turning, as seen in the touch response to physical contact, while minimum input from single-cell stimulation induces ipsilateral turning, a phenomenon not previously reported. This ipsilateral response, but not the contralateral one, is impaired by transecting the ascending neural tract known as the dorsolateral fascicule (DLF), indicating that two, distinct neural circuits trigger these two responses. Our results suggest that RB neurons transmit the position and quantity of sensory information, which are then processed separately to modulate behavioral strength and to select turning laterality.


Asunto(s)
Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Conducta Animal , Larva/fisiología , Neuronas/fisiología , Pez Cebra/crecimiento & desarrollo
15.
PLoS One ; 11(5): e0155687, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27195805

RESUMEN

Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato) in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME) that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues.


Asunto(s)
Proteínas Luminiscentes/genética , Ratas Transgénicas , Animales , Linaje de la Célula , Cromosomas Artificiales Bacterianos , Dependovirus , Electroporación , Eritrocitos/citología , Femenino , Fertilización , Fibroblastos/metabolismo , Genes Reporteros , Hipocampo/metabolismo , Imagenología Tridimensional , Integrasas , Macrófagos/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas , Transgenes , Proteína Fluorescente Roja
16.
Photochem Photobiol Sci ; 15(3): 365-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26853505

RESUMEN

The five glutamate (E) residues of transmembrane (TM)-2 of channelrhodopsin (CrChR)-2 are conserved among several members of the ChR family. A point mutation of one of them, E97, to a nonpolar alanine (E97A) reduced the photocurrent amplitude without influencing other photocurrent properties. The charge at this position is also the determinant of the Gd(3+)-dependent block of the channel. It has thus been suggested that E97 interacts with hydrated cations to facilitate their permeation and that these residues are the primary binding sites of Gd(3+). However, the counterpart of this position is alanine for MvChR1 from Mesostigma viride. Here we investigated the ion permeation and the Gd(3+)-dependent channel block of MvChR1. We found that the high-affinity binding site of Gd(3+) was absent in MvChR1, but was dependent on the negativity at this position. However, the ion permeation through the channel was markedly interfered with a negative charge at this position. Based on these findings, it is proposed that the ions can pass through the pore with minimal interaction with this position.


Asunto(s)
Gadolinio/metabolismo , Rodopsina/metabolismo , Streptophyta/metabolismo , Cationes/química , Cationes/metabolismo , Gadolinio/química , Transporte Iónico , Rodopsina/química , Streptophyta/química
17.
Sci Rep ; 5: 16533, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26552717

RESUMEN

Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.


Asunto(s)
Rayos Infrarrojos , Optogenética , Animales , Elementos de la Serie de los Lantanoides , Nanopartículas del Metal , Ratones , Neuronas/fisiología , Ratas , Espectroscopía Infrarroja Corta
18.
PLoS One ; 10(7): e0132475, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147470

RESUMEN

The key role of the respiratory neural center is respiratory rhythm generation to maintain homeostasis through the control of arterial blood pCO2/pH and pO2 levels. The neuronal network responsible for respiratory rhythm generation in neonatal rat resides in the ventral side of the medulla and is composed of two groups; the parafacial respiratory group (pFRG) and the pre-Bötzinger complex group (preBötC). The pFRG partially overlaps in the retrotrapezoid nucleus (RTN), which was originally identified in adult cats and rats. Part of the pre-inspiratory (Pre-I) neurons in the RTN/pFRG serves as central chemoreceptor neurons and the CO2 sensitive Pre-I neurons express homeobox gene Phox2b. Phox2b encodes a transcription factor and is essential for the development of the sensory-motor visceral circuits. Mutations in human PHOX2B cause congenital hypoventilation syndrome, which is characterized by blunted ventilatory response to hypercapnia. Here we describe the generation of a novel transgenic (Tg) rat harboring fluorescently labeled Pre-I neurons in the RTN/pFRG. In addition, the Tg rat showed fluorescent signals in autonomic enteric neurons and carotid bodies. Because the Tg rat expresses inducible Cre recombinase in PHOX2B-positive cells during development, it is a potentially powerful tool for dissecting the entire picture of the respiratory neural network during development and for identifying the CO2/O2 sensor molecules in the adult central and peripheral nervous systems.


Asunto(s)
Células Quimiorreceptoras , Cromosomas Artificiales Bacterianos , Proteínas de Homeodominio , Intercambio Gaseoso Pulmonar/fisiología , Frecuencia Respiratoria/fisiología , Factores de Transcripción , Cuerpo Trapezoide , Animales , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/citología , Células Quimiorreceptoras/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Humanos , Oxígeno/metabolismo , Ratas , Ratas Transgénicas , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Cuerpo Trapezoide/citología , Cuerpo Trapezoide/fisiología
19.
Bone ; 81: 306-314, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26211991

RESUMEN

Parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (VD3) are important factors in Ca(2+) homeostasis, and promote osteoclastogenesis by modulating receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression. However, their contribution to RANKL intracellular transport (RANKLiT), including the trigger for RANKL lysosomal vesicle (RANKL-lv) fusion to the cell membrane, is unclear. In neurons, depolarization of membrane potential increases the intracellular Ca(2+) level ([Ca(2+)]i) and promotes neurotransmitter release via fusion of the synaptic vesicles to the cell membrane. To determine whether membrane depolarization also regulates cellular processes such as RANKLiT in MC3T3-E1 osteoblasts (OBs), we generated a light-sensitive OB cell line and developed a system for altering their membrane potential via delivery of a blue light stimulus. In the membrane fraction of RANKL-overexpressing OBs, PTH and VD3 increased the membrane-bound RANKL (mbRANKL) level at 10 min after application without affecting the mRNA expression level, and depolarized the cell membrane while transiently increasing [Ca(2+)]i. In our novel OB line stably expressing the channelrhodopsin-wide receiver, blue light-induced depolarization increased the mbRANKL level, which was reversed by treatment of blockers for L-type voltage-gated Ca(2+) channels and Ca(2+) release from the endoplasmic reticulum. In co-cultures of osteoclast precursor-like RAW264.7 cells and light-sensitive OBs overexpressing RANKL, light stimulation induced an increase in tartrate-resistant acid phosphatase activity and promoted osteoclast differentiation. These results indicate that depolarization of the cell membrane is a trigger for RANKL-lv fusion to the membrane and that membrane potential contributes to the function of OBs. In addition, the non-genomic action of VD3-induced RANKL-lv fusion included the membrane-bound VD3 receptor (1,25D3-MARRS receptor). Elucidating the mechanism of RANKLiT regulation by PTH and VD3 will be useful for the development of drugs to prevent bone loss in osteoporosis and other bone diseases.


Asunto(s)
Membrana Celular/metabolismo , Líquido Intracelular/metabolismo , Osteoblastos/metabolismo , Ligando RANK/metabolismo , Animales , Línea Celular , Células Cultivadas , Ratones , Transporte de Proteínas/fisiología
20.
Nature ; 521(7550): 48-53, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25849775

RESUMEN

Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.


Asunto(s)
Flavobacteriaceae/química , Bombas Iónicas/química , Bombas Iónicas/efectos de la radiación , Luz , Rodopsina/química , Rodopsina/efectos de la radiación , Sodio/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Transporte Iónico/genética , Transporte Iónico/efectos de la radiación , Modelos Biológicos , Modelos Moleculares , Mutagénesis/genética , Optogenética , Potasio/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Bases de Schiff , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...