Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genome Med ; 16(1): 61, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659008

RESUMEN

BACKGROUND: Implementation of clinical metagenomics and pathogen genomic surveillance can be particularly challenging due to the lack of bioinformatics tools and/or expertise. In order to face this challenge, we have previously developed INSaFLU, a free web-based bioinformatics platform for virus next-generation sequencing data analysis. Here, we considerably expanded its genomic surveillance component and developed a new module (TELEVIR) for metagenomic virus identification. RESULTS: The routine genomic surveillance component was strengthened with new workflows and functionalities, including (i) a reference-based genome assembly pipeline for Oxford Nanopore technologies (ONT) data; (ii) automated SARS-CoV-2 lineage classification; (iii) Nextclade analysis; (iv) Nextstrain phylogeographic and temporal analysis (SARS-CoV-2, human and avian influenza, monkeypox, respiratory syncytial virus (RSV A/B), as well as a "generic" build for other viruses); and (v) algn2pheno for screening mutations of interest. Both INSaFLU pipelines for reference-based consensus generation (Illumina and ONT) were benchmarked against commonly used command line bioinformatics workflows for SARS-CoV-2, and an INSaFLU snakemake version was released. In parallel, a new module (TELEVIR) for virus detection was developed, after extensive benchmarking of state-of-the-art metagenomics software and following up-to-date recommendations and practices in the field. TELEVIR allows running complex workflows, covering several combinations of steps (e.g., with/without viral enrichment or host depletion), classification software (e.g., Kaiju, Kraken2, Centrifuge, FastViromeExplorer), and databases (RefSeq viral genome, Virosaurus, etc.), while culminating in user- and diagnosis-oriented reports. Finally, to potentiate real-time virus detection during ONT runs, we developed findONTime, a tool aimed at reducing costs and the time between sample reception and diagnosis. CONCLUSIONS: The accessibility, versatility, and functionality of INSaFLU-TELEVIR are expected to supply public and animal health laboratories and researchers with a user-oriented and pan-viral bioinformatics framework that promotes a strengthened and timely viral metagenomic detection and routine genomics surveillance. INSaFLU-TELEVIR is compatible with Illumina, Ion Torrent, and ONT data and is freely available at https://insaflu.insa.pt/ (online tool) and https://github.com/INSaFLU (code).


Asunto(s)
COVID-19 , Biología Computacional , Genoma Viral , Metagenómica , SARS-CoV-2 , Programas Informáticos , Metagenómica/métodos , Humanos , SARS-CoV-2/genética , SARS-CoV-2/clasificación , COVID-19/virología , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Internet , Genómica/métodos
2.
Nat Med ; 29(10): 2509-2517, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696933

RESUMEN

Pathogen genome sequencing during epidemics enhances our ability to identify and understand suspected clusters and investigate their relationships. Here, we combine genomic and epidemiological data of the 2022 mpox outbreak to better understand early viral spread, diversification and transmission dynamics. By sequencing 52% of the confirmed cases in Portugal, we identified the mpox virus sublineages with the highest impact on case numbers and fitted them into a global context, finding evidence that several international sublineages probably emerged or spread early in Portugal. We estimated a 62% infection reporting rate and that 1.3% of the population of men who have sex with men in Portugal were infected. We infer the critical role played by sexual networks and superspreader gatherings, such as sauna attendance, in the dissemination of mpox virus. Overall, our findings highlight genomic epidemiology as a tool for the real-time monitoring and control of mpox epidemics, and can guide future vaccine policy in a highly susceptible population.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Masculino , Humanos , Portugal/epidemiología , Homosexualidad Masculina , Brotes de Enfermedades , Análisis por Conglomerados
3.
Biology (Basel) ; 12(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759611

RESUMEN

Traditional foods are increasingly valued by consumers, whose attention and purchase willingness are highly influenced by other claims such as 'natural', 'sustainable', and 'clean label'. The purpose of the present study was to evaluate the impact of a novel non-thermal food processing method (i.e., HPP-assisted biocontrol combining mild high hydrostatic pressure, listeriophage Listex, and pediocin PA-1 producing Pediococcus acidilactici) on the succession of bacterial communities and quality of a fermented sausage model. A comparative analysis of instrumental color, texture, and lipid peroxidation revealed no significant differences (p > 0.05) in these quality parameters between non- and minimally processed fermented sausages throughout 60-day refrigerated storage (4 °C). The microbiota dynamics of biotreated and untreated fermented sausages were assessed by 16S rRNA next-generation sequencing, and the alpha and beta diversity analyses revealed no dissimilarity in the structure and composition of the bacterial communities over the analyzed period. The innovative multi-hurdle technology proposed herein holds valuable potential for the manufacture of traditional fermented sausages while preserving their unique intrinsic characteristics.

4.
Influenza Other Respir Viruses ; 17(3): e13121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36935845

RESUMEN

Background: Information on vaccine effectiveness in a context of novel variants of concern (VOC) emergence is of key importance to inform public health policies. This study aimed to estimate a measure of comparative vaccine effectiveness between Omicron (BA.1) and Delta (B.1.617.2 and sub-lineages) VOC according to vaccination exposure (primary or booster). Methods: We developed a case-case study using data on RT-PCR SARS-CoV-2-positive cases notified in Portugal during Weeks 49-51, 2021. To obtain measure of comparative vaccine effectiveness, we compared the odds of vaccination in Omicron cases versus Delta using logistic regression adjusted for age group, sex, region, week of diagnosis, and laboratory of origin. Results: Higher odds of vaccination were observed in cases infected by Omicron VOC compared with Delta VOC cases for both complete primary vaccination (odds ratio [OR] = 2.1; 95% confidence interval [CI]: 1.8 to 2.4) and booster dose (OR = 5.2; 95% CI: 3.1 to 8.8), equivalent to reduction of vaccine effectiveness from 44.7% and 92.8%, observed against infection with Delta, to -6.0% (95% CI: 29.2% to 12.7%) and 62.7% (95% CI: 35.7% to 77.9%), observed against infection with Omicron, for complete primary vaccination and booster dose, respectively. Conclusion: Consistent reduction in vaccine-induced protection against infection with Omicron was observed. Complete primary vaccination may not be protective against SARS-CoV-2 infection in regions where Omicron variant is dominant.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Registros Electrónicos de Salud
5.
Emerg Infect Dis ; 29(3): 569-575, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737101

RESUMEN

We estimated comparative primary and booster vaccine effectiveness (VE) of SARS-CoV-2 Omicron BA.5 and BA.2 lineages against infection and disease progression. During April-June 2022, we implemented a case-case and cohort study and classified lineages using whole-genome sequencing or spike gene target failure. For the case-case study, we estimated the adjusted odds ratios (aORs) of vaccination using a logistic regression. For the cohort study, we estimated VE against disease progression using a penalized logistic regression. We observed no reduced VE for primary (aOR 1.07 [95% CI 0.93-1.23]) or booster (aOR 0.96 [95% CI 0.84-1.09]) vaccination against BA.5 infection. Among BA.5 case-patients, booster VE against progression to hospitalization was lower than that among BA.2 case-patients (VE 77% [95% CI 49%-90%] vs. VE 93% [95% CI 86%-97%]). Although booster vaccination is less effective against BA.5 than against BA.2, it offers substantial protection against progression from BA.5 infection to severe disease.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Portugal , Estudios de Cohortes , SARS-CoV-2 , Progresión de la Enfermedad
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769230

RESUMEN

The application of whole genome sequencing of Mycobacterium tuberculosis directly on clinical samples has been investigated as a means to avoid the time-consuming need for culture isolation that can lead to a potential prolonged suboptimal antibiotic treatment. We aimed to provide a proof-of-concept regarding the application of the molecular capture of M. tuberculosis genomes directly from positive sputum samples as an approach for epidemiological and drug susceptibility predictions. Smear-positive sputum samples (n = 100) were subjected to the SureSelectXT HS Target Enrichment protocol (Agilent Technologies, Santa Clara, CA, USA) and whole-genome sequencing analysis. A higher number of reads on target were obtained for higher smear grades samples (i.e., 3+ followed by 2+). Moreover, 37 out of 100 samples showed ≥90% of the reference genome covered with at least 10-fold depth of coverage (27, 9, and 1 samples were 3+, 2+, and 1+, respectively). Regarding drug-resistance/susceptibility prediction, for 42 samples, ≥90% of the >9000 hits that are surveyed by TB-profiler were detected. Our results demonstrated that M. tuberculosis genome capture and sequencing directly from clinical samples constitute a potential valid backup approach for phylogenetic inferences and resistance prediction, essentially in settings when culture is not routinely performed or for samples that fail to grow.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Filogenia , Secuenciación Completa del Genoma , Esputo/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana
7.
Front Microbiol ; 14: 1277468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249473

RESUMEN

Introduction: Francisella tularensis is a highly infectious bacterium that causes the zoonotic disease tularemia. The development of genotyping methods, especially those based on whole-genome sequencing (WGS), has recently increased the knowledge on the epidemiology of this disease. However, due to the difficulties associated with the growth and isolation of this fastidious pathogen in culture, the availability of strains and subsequently WGS data is still limited. Methods: To surpass these constraints, we aimed to implement a culture-free approach to capture and sequence F. tularensis genomes directly from complex samples. Biological samples obtained from 50 common voles and 13 Iberian hares collected in Spain were confirmed as positive for F. tularensis subsp. holarctica and subjected to a WGS target capture and enrichment protocol, using RNA oligonucleotide baits designed to cover F. tularensis genomic diversity. Results: We obtained full genome sequences of F. tularensis from 13 animals (20.6%), two of which had mixed infections with distinct genotypes, and achieved a higher success rate when compared with culture-dependent WGS (only successful for two animals). The new genomes belonged to different clades commonly identified in Europe (B.49, B.51 and B.262) and subclades. Despite being phylogenetically closely related to other genomes from Spain, the detected clusters were often found in other countries. A comprehensive phylogenetic analysis, integrating 599 F. tularensis subsp. holarctica genomes, showed that most (sub)clades are found in both humans and animals and that closely related strains are found in different, and often geographically distant, countries. Discussion: Overall, we show that the implemented culture-free WGS methodology yields timely, complete and high-quality genomic data of F. tularensis, being a highly valuable approach to promote and potentiate the genomic surveillance of F. tularensis and ultimately increase the knowledge on the genomics, ecology and epidemiology of this highly infectious pathogen.

8.
J Proteomics ; 268: 104714, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36058542

RESUMEN

One of the most important livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) genetic lineages is the clonal complex (CC) 398, which can cause typical S. aureus-associated infections in people. In this work, whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics were applied to study the genetic characteristics of three MRSA CC398 isolates recovered from humans (strains C5621 and C9017), and from an animal (strain OR418). Of the three strains, C9017 presented the broadest resistance genotype, including resistance to fluroquinolone, clindamycin, tiamulin, macrolide and aminoglycoside antimicrobial classes. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains. For example, the immunoglobulin-binding protein Sbi was more abundant in OR418. Considering that Sbi is a multifunctional immune evasion factor in S. aureus, the results point to OR418 strain having high zoonotic potential. Overall, multiomics biomarker signatures can assume an important role to advance precision medicine in the years to come. SIGNIFICANCE: MRSA is one of the most representative drug-resistant pathogens and its dissemination is increasing due to MRSA capability of establishing new reservoirs. LA-MRSA is considered an emerging problem worldwide and CC398 is one of the most important genetic lineages. In this study, three MRSA CC398 isolates recovered from humans and from a wild animal were analyzed through whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics in order to gather systems-wide omics data and better understand the genetic characteristics of this lineage to identify distinctive markers and genomic features of relevance to public health.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Transcriptoma , Aminoglicósidos , Animales , Animales Salvajes/microbiología , Antibacterianos/farmacología , Clindamicina , Biología Computacional , Humanos , Inmunoglobulinas , Ganado , Macrólidos , Staphylococcus aureus Resistente a Meticilina/genética , Proteoma , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética
10.
PLoS Biol ; 20(8): e3001769, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35998195

RESUMEN

We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.


Asunto(s)
Monkeypox virus , Mpox , Brotes de Enfermedades , Genómica , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética
11.
Nat Med ; 28(8): 1569-1572, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750157

RESUMEN

The largest monkeypox virus (MPXV) outbreak described so far in non-endemic countries was identified in May 2022 (refs. 1-6). In this study, shotgun metagenomics allowed the rapid reconstruction and phylogenomic characterization of the first MPXV outbreak genome sequences, showing that this MPXV belongs to clade 3 and that the outbreak most likely has a single origin. Although 2022 MPXV (lineage B.1) clustered with 2018-2019 cases linked to an endemic country, it segregates in a divergent phylogenetic branch, likely reflecting continuous accelerated evolution. An in-depth mutational analysis suggests the action of host APOBEC3 in viral evolution as well as signs of potential MPXV human adaptation in ongoing microevolution. Our findings also indicate that genome sequencing may provide resolution to track the spread and transmission of this presumably slow-evolving double-stranded DNA virus.


Asunto(s)
Monkeypox virus , Mpox , Brotes de Enfermedades , Humanos , Mpox/epidemiología , Mpox/genética , Monkeypox virus/genética , Filogenia
12.
Commun Med (Lond) ; 2: 10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603268

RESUMEN

Background: Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods: By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARS-CoV-2 introductions and early dissemination in Portugal. Results: We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions: Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.

13.
J Infect ; 85(1): 64-74, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609706

RESUMEN

COVID-19 local outbreak response relies on subjective information to reconstruct transmission chains. We assessed the concordance between epidemiologically linked cases and viral genetic profiles, in the Baixo Vouga Region (Portugal), from March to June 2020. A total of 1925 COVID-19 cases were identified, with 1143 being assigned to 154 epiclusters. Viral genomic data was available for 128 cases. Public health authorities identified two large epiclusters (280 and 101 cases each) with a central role on the spread of the disease. Still, the genomic data revealed that each epicluster included two distinct SARS-CoV-2 genetic profiles and thus more than one transmission network. We were able to show that the initial transmission dynamics reconstruction was most likely accurate, but the increasing dimension of the epiclusters and its extension to densely populated settings (healthcare and nursing home settings) triggered the misidentification of links. Genomics was also key to resolve some sporadic cases and misidentified direction of transmission. The epidemiological investigation showed a sensitivity of 70%-86% to detect transmission chains. This study contributes to the understanding of the hurdles and caveats associated with the epidemiological investigation of hundreds of community cases in the context of a massive outbreak caused by a highly transmissible and new respiratory virus.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Brotes de Enfermedades , Genoma Viral , Genómica , Humanos , SARS-CoV-2/genética
14.
Evol Med Public Health ; 10(1): 142-155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419205

RESUMEN

Background and objectives: To understand how organisms evolve, it is fundamental to study how mutations emerge and establish. Here, we estimated the rate of mutation accumulation of SARS-CoV-2 in vitro and investigated the repeatability of its evolution when facing a new cell type but no immune or drug pressures. Methodology: We performed experimental evolution with two strains of SARS-CoV-2, one carrying the originally described spike protein (CoV-2-D) and another carrying the D614G mutation that has spread worldwide (CoV-2-G). After 15 passages in Vero cells and whole genome sequencing, we characterized the spectrum and rate of the emerging mutations and looked for evidences of selection across the genomes of both strains. Results: From the frequencies of the mutations accumulated, and excluding the genes with signals of selection, we estimate a spontaneous mutation rate of 1.3 × 10 -6 ± 0.2 × 10-6 per-base per-infection cycle (mean across both lineages of SARS-CoV-2 ± 2SEM). We further show that mutation accumulation is larger in the CoV-2-D lineage and heterogeneous along the genome, consistent with the action of positive selection on the spike protein, which accumulated five times more mutations than the corresponding genomic average. We also observe the emergence of mutators in the CoV-2-G background, likely linked to mutations in the RNA-dependent RNA polymerase and/or in the error-correcting exonuclease protein. Conclusions and implications: These results provide valuable information on how spontaneous mutations emerge in SARS-CoV-2 and on how selection can shape its genome toward adaptation to new environments. Lay Summary: Each time a virus replicates inside a cell, errors (mutations) occur. Here, via laboratory propagation in cells originally isolated from the kidney epithelium of African green monkeys, we estimated the rate at which the SARS-CoV-2 virus mutates-an important parameter for understanding how it can evolve within and across humans. We also confirm the potential of its Spike protein to adapt to a new environment and report the emergence of mutators-viral populations where mutations occur at a significantly faster rate.

15.
Front Microbiol ; 12: 740068, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867857

RESUMEN

Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining increased relevance with the inclusion of the causing agent Brucella spp. in the class B bioterrorism group. Until now, multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered as the gold standard for Brucella typing. However, this methodology is laborious, and, with the rampant release of Brucella genomes, the transition from the traditional MLVA to whole genome sequencing (WGS)-based typing is on course. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data obtained throughout the last decade and considering that the transition timings will vary considerably among different countries, it is important to determine WGS-based MLVA alleles of the nowadays sequenced genomes. On this regard, we aimed to evaluate the performance of a Python script that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing it to the PCR-based MLVA procedure over 83 strains from different Brucella species. The WGS-based MLVA approach detected 95.3% of all possible 1,328 hits (83 strains×16 loci) and showed an agreement rate with the PCR-based MLVA procedure of 96.4% for MLVA-16. According to our dataset, we suggest the use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding "boundaries" for the future application of the script. In conclusion, the evaluated script seems to be a very useful and robust tool for the in silico determination of MLVA profiles of Brucella strains, allowing retrospective and prospective molecular epidemiological studies, which are important for maintaining an active epidemiological surveillance of brucellosis.

16.
Wellcome Open Res ; 6: 121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095513

RESUMEN

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

17.
Int J Infect Dis ; 112: 318-320, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34547489

RESUMEN

Re-positivity of SARS-CoV-2 tests is widely reported, raising discussion about guidance for patient discharge and ending isolation. The unsuccessful recovery of replication-competent virus and/or absence of secondary cases has suggested that re-positive patients are not contagious. This study reports SARS-CoV-2 re-positivity in a healthcare professional 16 days after three negative tests, with viral genome sequencing supporting contagiousness leading to secondary cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Atención a la Salud , Genoma Viral , Humanos , Alta del Paciente
18.
mSphere ; 6(4): e0024421, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34319130

RESUMEN

Recent studies have shown that persistent SARS-CoV-2 infections in immunocompromised patients can trigger the accumulation of an unusual high number of mutations with potential relevance at both biological and epidemiological levels. Here, we report a case of an immunocompromised patient (non-Hodgkin lymphoma patient under immunosuppressive therapy) with a persistent SARS-CoV-2 infection (marked by intermittent positivity) over at least 6 months. Viral genome sequencing was performed at days 1, 164, and 171 to evaluate SARS-CoV-2 evolution. Among the 15 single-nucleotide polymorphisms (SNPs) (11 leading to amino acid alterations) and 3 deletions accumulated during this long-term infection, four amino acid changes (V3G, S50L, N87S, and A222V) and two deletions (18-30del and 141-144del) occurred in the virus Spike protein. Although no convalescent plasma therapy was administered, some of the detected mutations have been independently reported in other chronically infected individuals, which supports a scenario of convergent adaptive evolution. This study shows that it is of the utmost relevance to monitor the SARS-CoV-2 evolution in immunocompromised individuals, not only to identify novel potentially adaptive mutations, but also to mitigate the risk of introducing "hyper-evolved" variants in the community. IMPORTANCE Tracking the within-patient evolution of SARS-CoV-2 is key to understanding how this pandemic virus shapes its genome toward immune evasion and survival. In the present study, by monitoring a long-term COVID-19 immunocompromised patient, we observed the concurrent emergence of mutations potentially associated with immune evasion and/or enhanced transmission, mostly targeting the SARS-CoV-2 key host-interacting protein and antigen. These findings show that the frequent oscillation in the immune status in immunocompromised individuals can trigger an accelerated virus evolution, thus consolidating this study model as an accelerated pathway to better understand SARS-CoV-2 adaptive traits and anticipate the emergence of variants of concern.


Asunto(s)
COVID-19/inmunología , Evasión Inmune/inmunología , Huésped Inmunocomprometido/inmunología , Linfoma no Hodgkin/inmunología , SARS-CoV-2/inmunología , Aminoácidos/genética , Aminoácidos/inmunología , Animales , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Femenino , Genoma Viral/genética , Genoma Viral/inmunología , Humanos , Evasión Inmune/genética , Inmunización Pasiva/métodos , Linfoma no Hodgkin/virología , Persona de Mediana Edad , Mutación/genética , Mutación/inmunología , Pandemias/prevención & control , SARS-CoV-2/genética , Células Vero , Replicación Viral/genética , Replicación Viral/inmunología
19.
Infect Genet Evol ; 93: 104969, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147652

RESUMEN

Streptococcus agalactiae evasion from the human defense mechanisms has been linked to the production of DNases. These were proposed to contribute to the hypervirulence of S. agalactiae ST17/capsular-type III strains, mostly associated with neonatal meningitis. We performed a comparative genomic analysis between ST17 and ST19 human strains with different cell tropism and distinct DNase production phenotypes. All S. agalactiae ST17 strains, with the exception of 2211-04, were found to display DNase activity, while the opposite scenario was observed for ST19, where 1203-05 was the only DNase(+) strain. The analysis of the genetic variability of the seven genes putatively encoding secreted DNases in S. agalactiae revealed an exclusive amino acid change in the predicted signal peptide of GBS0661 (NucA) of the ST17 DNase(-), and an exclusive amino acid change alteration in GBS0609 of the ST19 DNase(+) strain. Further core-genome analysis identified some specificities (SNVs or indels) differentiating the DNase(-) ST17 2211-04 and the DNase(+) ST19 1203-05 from the remaining strains of each ST. The pan-genomic analysis evidenced an intact phage without homology in S. agalactiae and a transposon homologous to TnGBS2.3 in ST17 DNase(-) 2211-04; the transposon was also found in one ST17 DNase(+) strain, yet with a different site of insertion. A group of nine accessory genes were identified among all ST17 DNase(+) strains, including the Eco47II family restriction endonuclease and the C-5 cytosine-specific DNA methylase. None of these loci was found in any DNase(-) strain, which may suggest that these proteins might contribute to the lack of DNase activity. In summary, we provide novel insights on the genetic diversity between DNase(+) and DNase(-) strains, and identified genetic traits, namely specific mutations affecting predicted DNases (NucA and GBS0609) and differences in the accessory genome, that need further investigation as they may justify distinct DNase-related virulence phenotypes in S. agalactiae.


Asunto(s)
Proteínas Bacterianas/genética , Desoxirribonucleasas/genética , Streptococcus agalactiae/genética , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas/metabolismo , Genoma Bacteriano , Streptococcus agalactiae/enzimología
20.
Euro Surveill ; 26(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890566

RESUMEN

We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0-2.9; B.1.351: 3.6, 95% CI: 2.1-6.2; P.1: 2.6, 95% CI: 1.4-4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4-3.5; P.1: 2.2, 95% CI: 1.7-2.8).


Asunto(s)
COVID-19 , SARS-CoV-2 , Cuidados Críticos , Europa (Continente)/epidemiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...