Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15662, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215912

RESUMEN

The modified extended tanh technique is used to investigate the conformable time fractional Drinfel'd-Sokolov-Wilson (DSW) equation and integrate some precise and explicit solutions in this survey. The DSW equation was invented in fluid dynamics. The modified extended tanh technique executes to integrate the nonlinear DSW equation for achieve diverse solitonic and traveling wave envelops. Because of this, trigonometric, hyperbolic and rational solutions have been found with a few acceptable parameters. The dynamical behaviors of the obtained solutions in the pattern of the kink, bell, multi-wave, kinky lump, periodic lump, interaction lump, and kink wave types have been illustrated with 3D and density plots for arbitrary chose of the permitted parameters. By characterizing the particular benefits of the exemplified boundaries by the portrayal of sketches and by deciphering the actual events, we have laid out acceptable soliton plans and managed the actual significance of the acquired courses of action. New precise voyaging wave arrangements are unambiguously gained with the aid of symbolic computation using the procedures that have been announced. Therefore, the obtained outcomes expose that the projected schemes are very operative, easier and efficient on realizing natures of waves and also introducing new wave strategies to a diversity of NLEEs that occur within the engineering sector.

2.
PLoS One ; 17(1): e0261427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085239

RESUMEN

Cost and safety are critical factors in the oil and gas industry for optimizing wellbore trajectory, which is a constrained and nonlinear optimization problem. In this work, the wellbore trajectory is optimized using the true measured depth, well profile energy, and torque. Numerous metaheuristic algorithms were employed to optimize these objectives by tuning 17 constrained variables, with notable drawbacks including decreased exploitation/exploration capability, local optima trapping, non-uniform distribution of non-dominated solutions, and inability to track isolated minima. The purpose of this work is to propose a modified multi-objective cellular spotted hyena algorithm (MOCSHOPSO) for optimizing true measured depth, well profile energy, and torque. To overcome the aforementioned difficulties, the modification incorporates cellular automata (CA) and particle swarm optimization (PSO). By adding CA, the SHO's exploration phase is enhanced, and the SHO's hunting mechanisms are modified with PSO's velocity update property. Several geophysical and operational constraints have been utilized during trajectory optimization and data has been collected from the Gulf of Suez oil field. The proposed algorithm was compared with the standard methods (MOCPSO, MOSHO, MOCGWO) and observed significant improvements in terms of better distribution of non-dominated solutions, better-searching capability, a minimum number of isolated minima, and better Pareto optimal front. These significant improvements were validated by analysing the algorithms in terms of some statistical analysis, such as IGD, MS, SP, and ER. The proposed algorithm has obtained the lowest values in IGD, SP and ER, on the other side highest values in MS. Finally, an adaptive neighbourhood mechanism has been proposed which showed better performance than the fixed neighbourhood topology such as L5, L9, C9, C13, C21, and C25. Hopefully, this newly proposed modified algorithm will pave the way for better wellbore trajectory optimization.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Algoritmos , Simulación por Computador , Industria del Petróleo y Gas
3.
Micromachines (Basel) ; 12(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34945316

RESUMEN

In this paper, the performance of an active neutral point clamped (ANPC) inverter is evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga2O3) devices. The hybridization of semiconductor devices is performed since the production volume and fabrication of ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive. In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the Ga2O3 switches are operated at a higher switching frequency. The proposed ANPC mitigates the fault current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is developed by applying a specified modulation technique and an intelligent switching arrangement, which has further improved its performance by optimizing the loss distribution among the Si/Ga2O3 devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the common mode current stress on the switches and thus generates a lower common-mode voltage on the output. It can also operate at a broad range of power factors. The paper extensively analyzed the switching performance of UWBG semiconductor (Ga2O3) devices using double pulse testing (DPT) and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved a maximum efficiency of 99.1%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA