Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 934, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867843

RESUMEN

Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. A unique bi-domain defensin, designated MtDef5, was recently characterized for its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we characterize antibacterial activity of this defensin and its two domains, MtDef5A and MtDef5B, against two economically important plant bacterial pathogens, Gram-negative Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent MtDef5. MtDef5 and each of its two domains induce distinct morphological changes and cell death in X. campestris. They permeabilize the bacterial plasma membrane and translocate across membranes to the cytoplasm. They bind to negatively charged DNA indicating these peptides may kill bacterial cells by inhibiting DNA synthesis and/or transcription. The cationic amino acids present in the two γ-core motifs of MtDef5 that were previously shown to be important for its antifungal activity are also important for its antibacterial activity. MtDef5 and its more potent single domain MtDef5B have the potential to be deployed as antibacterial agents for control of a Xanthomonas wilt disease in transgenic crops.

2.
Sci Rep ; 7(1): 16157, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170445

RESUMEN

Defensins are cysteine-rich cationic antimicrobial peptides contributing to the innate immunity in plants. A unique gene encoding a highly cationic bi-domain defensin MtDef5 has been identified in a model legume Medicago truncatula. MtDef5 consists of two defensin domains of 50 amino acids each linked by a 7-amino acid peptide. It exhibits broad-spectrum antifungal activity against filamentous fungi at submicromolar concentrations. It rapidly permeabilizes the plasma membrane of the ascomycete fungi Fusarium graminearum and Neurospora crassa and induces accumulation of reactive oxygen species. It is internalized by these fungi, but uses spatially distinct modes of entry into these fungi. It co-localizes with cellular membranes, travels to nucleus and becomes dispersed in other subcellular locations. It binds to several membrane-resident phospholipids with preference for phosphatidylinositol monophosphates and forms oligomers. Mutations of the cationic amino acids present in the two γ-core motifs of this defensin that eliminate oligomerization also knockout its ability to induce membrane permeabilization and fungal growth arrest. MtDef5 is the first bi-domain plant defensin that exhibits potent broad-spectrum antifungal activity, recruits multiple membrane phospholipids and forms oligomers in their presence. These findings raise the possibility that MtDef5 might be useful as a novel antifungal agent in transgenic crops.


Asunto(s)
Antifúngicos/química , Defensinas/química , Fosfolípidos/química , Antifúngicos/farmacología , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Neurospora crassa/efectos de los fármacos , Neurospora crassa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Appl Microbiol Biotechnol ; 101(16): 6431-6445, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28643182

RESUMEN

The soil-borne fungus Fusarium virguliforme causes sudden death syndrome (SDS), one of the most devastating diseases of soybean in North and South America. Despite the importance of SDS, a clear understanding of the fungal pathogenicity factors that affect the development of this disease is still lacking. We have identified FvSTR1, a F. virguliforme gene, which encodes a protein similar to a family of striatin proteins previously reported to regulate signalling pathways, cell differentiation, conidiation, sexual development, and virulence in filamentous fungi. Striatins are multi-domain proteins that serve as scaffolding units in the striatin-interacting phosphatase and kinase (STRIPAK) complex in fungi and animals. To address the function of a striatin homologue in F. virguliforme, FvSTR1 was disrupted and functionally characterized using a gene knock out strategy. The resulting Fvstr1 mutants were largely impaired in conidiation and pigmentation, and displayed defective conidia and conidiophore morphology compared to the wild-type and ectopic transformants. Greenhouse virulence assays revealed that the disruption of FvSTR1 resulted in complete loss of virulence in F. virguliforme. Microtome studies using fluorescence microscopy showed that the Fvstr1 mutants were defective in their ability to colonize the vascular system. The Fvstr1 mutants also showed a reduced transcript level of genes involved in asexual reproduction and in the production of secondary metabolites. These results suggest that FvSTR1 has a critical role in asexual development and virulence in F. virguliforme.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Factores de Virulencia/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/fisiología , Fusarium/genética , Fusarium/fisiología , Mutación , Enfermedades de las Plantas/microbiología , Glycine max , Esporas Fúngicas , Virulencia , Factores de Virulencia/fisiología
4.
Curr Genet ; 63(4): 723-738, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28132080

RESUMEN

Fusarium virguliforme is a soil-borne pathogenic fungus that causes sudden death syndrome (SDS) in soybean. Its pathogenicity is believed to require the activity of cell-wall-degrading enzymes (CWDEs). The sucrose non-fermenting protein kinase 1 gene (SNF1) is a key component of the glucose de-repression pathway in yeast, and a regulator of gene expression for CWDEs in some plant pathogenic fungi. To elucidate the functional role of the SNF1 homolog in F. virguliforme, FvSNF1 was disrupted using a split-marker strategy. Disruption of FvSNF1 in F. virguliforme abolishes galactose utilization and causes poor growth on xylose, arabinose and sucrose. However, the resulting Fvsnf1 mutant grew similar to wild-type and ectopic transformants on glucose, fructose, maltose, or pectin as the main source of carbon. The Fvsnf1 mutant displayed no expression of the gene-encoding galactose oxidase (GAO), a secretory enzyme that catalyzes oxidation of D-galactose. It also exhibited a significant reduction in the expression of several CWDE-coding genes in contrast to the wild-type strain. Greenhouse pathogenicity assays revealed that the Fvsnf1 mutant was severely impaired in its ability to cause SDS on challenged soybean plants. Microscopy and microtome studies on infected roots showed that the Fvsnf1 mutant was defective in colonizing vascular tissue of infected plants. Cross and longitudinal sections of infected roots stained with fluorescein-labeled wheat germ agglutinin and Congo red showed that the Fvsnf1 mutant failed to colonize the xylem vessels and phloem tissue at later stages of infection. Quantification of the fungal biomass in inoculated roots further confirmed a reduced colonization of roots by the Fvsnf1 mutant when compared to the wild type. These findings suggest that FvSNF1 regulates the expression of CWDEs in F. virguliforme, thus affecting the virulence of the fungus on soybean.


Asunto(s)
Fusarium/enzimología , Glycine max/microbiología , Enfermedades de las Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Pared Celular/enzimología , Pared Celular/genética , Fusarium/genética , Fusarium/patogenicidad , Galactosa/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Glycine max/genética , Glycine max/fisiología , Sacarosa/metabolismo
5.
J Vis Exp ; (130)2017 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364205

RESUMEN

Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.


Asunto(s)
Defensinas/metabolismo , Fusarium/metabolismo , Neurospora crassa/metabolismo , Proteínas de Plantas/metabolismo , Plantas/microbiología , Microscopía Confocal/métodos , Plantas/metabolismo
6.
Mol Microbiol ; 100(3): 542-59, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26801962

RESUMEN

Defensins play an important role in plant defense against fungal pathogens. The plant defensin, MtDef4, inhibits growth of the ascomycete fungi, Neurospora crassa and Fusarium graminearum, at micromolar concentrations. We have reported that MtDef4 is transported into the cytoplasm of these fungi and exerts its antifungal activity on intracellular targets. Here, we have investigated whether the antifungal mechanisms of MtDef4 are conserved in these fungi. We show that N. crassa and F. graminearum respond differently to MtDef4 challenge. Membrane permeabilization is required for the antifungal activity of MtDef4 against F. graminearum but not against N. crassa. We find that MtDef4 is targeted to different subcellular compartments in each fungus. Internalization of MtDef4 in N. crassa is energy-dependent and involves endocytosis. By contrast, MtDef4 appears to translocate into F. graminearum autonomously using a partially energy-dependent pathway. MtDef4 has been shown to bind to the phospholipid phosphatidic acid (PA). We provide evidence that the plasma membrane localized phospholipase D, involved in the biosynthesis of PA, is needed for entry of this defensin in N. crassa, but not in F. graminearum. To our knowledge, this is the first example of a defensin which inhibits the growth of two ascomycete fungi via different mechanisms.


Asunto(s)
Antifúngicos/metabolismo , Defensinas/metabolismo , Endocitosis/fisiología , Fusarium/crecimiento & desarrollo , Neurospora crassa/crecimiento & desarrollo , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Brefeldino A/farmacología , Permeabilidad de la Membrana Celular/fisiología , Endocitosis/efectos de los fármacos , Filipina/farmacología , Ácidos Fosfatidicos/química , Fosfolipasa D/química , Fosfolipasa D/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA