Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 236: 113785, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387323

RESUMEN

Bacterial skin infections represent a major healthcare concern that can delay healing and threaten human health. Silver nanoparticles (AgNPs) have been widely used for antimicrobial purposes; however, their high toxicity limits their applications. Therefore, there is an urgent need to develop simple and efficient therapeutic approaches for treating bacterial infections and promoting wound healing. Here, novel tripeptide (Ghk and GhkCu)-modified AgNPs were developed and subsequently evaluated their antibacterial efficacy against four pathogenic bacterial isolates, cytotoxic properties, and therapeutic effects as a topical treatment for infected wounds. Spherical GhkAgNPs and GhkCuAgNPs with average sizes of 45.92 nm and 56.82 nm exhibited potential antibacterial activity, with a MIC concentration of 8 µg/ml against S. aureus and E. coli. Both AgNPs showed superior bactericidal effects against S. aureus, with complete inhibition after 7 days of treatment. Cytotoxicity assays revealed IC50 (half maximal inhibitory concentrations) values ranging from 6.75 to 6.99 µg/ml in L929 cells. GhkAgNPs displayed accelerated cell migration and facilitated healing up to 92% after 12 h. Furthermore, topical applications of GhkAgNPs and GhkCuAgNPs to S. aureus-infected wounds demonstrated enhanced in vivo wound healing efficacy compared to control groups, as evidenced by increased regenerated epidermal thickness, improved collagen deposition, and downregulation of TNF-α expression. Hence concluded that these novel tripeptides Ghk and GhkCu-modified AgNPs exhibited potent antibacterial effects and significantly promoted wound healing properties.


Asunto(s)
Nanopartículas del Metal , Plata , Humanos , Plata/química , Staphylococcus aureus , Nanopartículas del Metal/química , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Cicatrización de Heridas
2.
ACS Omega ; 9(7): 7668-7678, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405495

RESUMEN

Microbial degradation of dyes is vital to understanding the fate of dyes in the environment. In this study, a fungal strain A-3 and a bacterial strain L-6, which were identified as Aspergillus fumigatus and Pseudomonas fluorescens, respectively, had been proven to efficiently degrade crystal violet (CV) dye. The decolorization of CV dye by fungal and bacterial cocultivation was investigated. The results showed that the decolorization rate of cocultures was better than monoculture (P. fluorescens in L-6 (PF), and that of A. fumigatus A-3 (AF)). Furthermore, enzymatic analysis further revealed that Lac, MnP, Lip, and NADH-DCIP reductases were involved in the biodegradation of CV dyes. UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) were used to examine the degradation products. GC-MS analysis showed the presence of 4-(dimethylamino) benzophenone, 3-dimethylaminophenol, benzyl alcohol, and benzaldehyde, indicating that CV was degraded into simpler compounds. The phytotoxicity tests revealed that CV degradation products were less toxic than the parent compounds, indicating that the cocultures detoxified CV dyes. As a result, the cocultures are likely to have a wide range of applications in the bioremediation of CV dyes.

3.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040655

RESUMEN

AIMS: Botrytis cinerea is a pathogenic fungus that infests multiple crops, which causes a severe decrease in yield and generates substantial losses in the economy. Palmarosa essential oil (PEO) is a primary aromatic compound extracted from palmarosa that is commonly used for scent, medicine, and flavoring foods due to its diverse bioactive properties. In this study, we explored the antifungal activity and the main mechanism of action of PEO against B. cinerea. In addition, the components and control effects of PEO were also studied. METHODS AND RESULTS: The antifungal assay was tested using the mycelial growth rate method and colony morphology. The constituents of PEO were identified according to gas chromatography/mass spectrometry (GC-MS). The main mechanism of action of PEO was evaluated by measuring representative indicators, which consist of cell contents leakage, excess reactive oxygen species (ROS), and other related indicators. The results indicated that at a concentration of 0.60 ml l-1, PEO exhibits strong antifungal activity against B. cinerea. The PEO mainly included 13 compounds, of which citronellol (44.67%), benzyl benzoate (14.66%), and acetyl cedrene (9.63%) might be the main antifungal ingredients. The study elucidated the main mechanism of action of PEO against B. cinerea, which involved the disruption of cell membrane structure, resulting in altered the cell membrane permeability, leakage of cell contents, and accumulation of excess ROS. CONCLUSIONS: PEO is a satisfactory biological control agent that inhibits B. cinerea in postharvest onions. PEO (0.60 ml l-1) exhibited strong antifungal activity by disrupting the cell membrane structure, altering cell membrane permeability, leading to the cell contents leakage, accumulation of excess ROS and increased level of Malondialdehyde (MDA) compared to the control group.


Asunto(s)
Antifúngicos , Aceites Volátiles , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Cebollas , Especies Reactivas de Oxígeno , Botrytis , Enfermedades de las Plantas/prevención & control
4.
Signal Transduct Target Ther ; 8(1): 418, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919282

RESUMEN

Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Neoplasias , Humanos , Oro/uso terapéutico , Inteligencia Artificial , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos
5.
Microbiol Spectr ; 11(4): e0070823, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37310269

RESUMEN

Candidiasis is a life-threatening disease that increases mortality in critically ill patients. However, such epidemiological data are still lacking in underdeveloped regions of China. A retrospective analysis (2016 to 2021) was conducted in Meizhou People's Hospital, China to study the burden of candidiasis, particularly candidemia, and antifungal susceptibilities of the species among hospitalized patients. Of the 7,864 candidiasis cases, 461 (5.86%) were candidemia cases. Candida albicans (64.25%) was the most identified species, followed by C. tropicalis (12.61%), C. glabrata (10.79%), and C. parapsilosis (9.79%). In non-C. albicans (NCA) candidemia cases, the number of C. glabrata cases was higher (102/461, 22.37%) than C. tropicalis (64/461, 14.04%). Gastrointestinal pathology, respiratory dysfunctions, septic shock, and malignancies were common underlying comorbidities, respectively. A central venous catheter was an independent risk factor for both C. albicans and NCA candidemia. The mortality rate was not statistically significant for either C. albicans or NCA. Amphotericin B and 5-flucytosine were highly effective (98 to 100%), while azoles were least effective (67.74 to 95.66%). Candidemia cases caused by C. tropicalis and C. glabrata had significantly lower azole susceptibility than non-candidemia-causing isolates. This study provides valuable information for prescribers to choose the right empirical therapy, for researchers to explore different resistance mechanisms, and for health care managers to control candidiasis better. IMPORTANCE This study provides important information on the burden of candidiasis, particularly candidemia, and the antifungal susceptibility of Candida species among hospitalized patients in an underdeveloped region of China. First, the finding that azoles were least effective against Candida species causing candidemia is particularly noteworthy, as it suggests the possibility of resistance to this class of antifungal agents. This information can guide the choice of empirical therapy and help in the selection of appropriate antifungal agents for the treatment of candidemia, thereby reducing the risk of resistance development. Second, the study provides important information for researchers to explore different resistance mechanisms in Candida species. Finally, the study has important implications for health care managers in controlling the spread of candidiasis. The high prevalence of candidemia cases in the study highlights the need for appropriate infection control measures to prevent the spread of the disease.


Asunto(s)
Candidemia , Candidiasis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Centros de Atención Terciaria , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Candidiasis/microbiología , Candida , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Candida albicans , Factores de Riesgo , Candida glabrata , Azoles , Candida parapsilosis
6.
Virulence ; 13(1): 1573-1589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36120738

RESUMEN

Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.


Asunto(s)
Candida , Candidiasis , Humanos , Anfotericina B , Anidulafungina , Antifúngicos/farmacología , Azoles , Candida albicans , Candida glabrata , Candida parapsilosis , Candida tropicalis , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Candidiasis/microbiología , Equinocandinas , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana
7.
Plant Dis ; 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536208

RESUMEN

White clover (Trifolium repens L.) belongs to the Fabaceae family legume and is cultivated in China for its medicinal properties and ornamental value. White clover is grown around the world for forage, turf , green manure and soil conservation purposes (Zhang el al. 2016). In October 2021, an investigation of a 1,000 m2 plant nursery in Lanzhou, China (36°06'N, 103°83'E) found that 80% of White clover plants were infected, and powdery mildew covered 95% of the leaf area. The disease had seriously destroyed the forage quality and reduced the ornamental value. Initially, thin, radial, irregular white colonies appeared on leaves and gradually spread to stems. The white colonies then expanded and thickened to cover upper surface of the leaf, and microscopic hyphae appeared on the bottom of the leaf. In severe cases, the infection resulted in dieback of the leaf. A small area of sporulating fungus was stripped off from the leaf surface with tape and mounted in sterile water for microscopic examination (Mukhtar et al. 2017). Conidiophores were cylindrical, consisting of a foot cell followed by three to four short cells, measuring 75 to 160 × 7 to 10 µm. Conidiophores had straight, cylindric foot cells ranging from 25 to 40 µm long. Singly produced conidia were hyaline and ranged in shape from oblong to cylindrical. Conidia lacked distinct fibrotic bodies and measured 30 to 45 × 15 to 25 µm in length. Long, unbranched germ tubes formed from the ends of the conidia and nipple-shaped appressoria developed on epiphytic mycelia. Based on these morphological characteristics, the pathogen was initially identified morphologically as Erysiphe polygoni (Braun and Cook 2012). To validate the identity, the internal transcribed spacer (ITS) region of the pathogen (SY77) rDNA was amplified by PCR and sequenced using the ITS1/ITS4 primers (White et al. 1990). The resulting sequences were registered to GenBank (GenBank Accession No.OM280998). The ITS sequence of the SY77 was 100% (640/640) identical to E. polygoni (LC009892) on Polygonum aviculare in the United Kingdom and 99% (638/640) identical to E. polygoni (MK685172) on Antigonon leptopus in Taiwan. MEGA 7.0 was used to conduct the neighbor-joining phylogenetic analysis using the ITS sequences from GenBank. The data indicated that the strain SY77 and E. polygoni clustered together on the same branch. Pathogenicity tests were conducted by gently pressing the infected leaves onto five healthy potted White clover plants, while five non-inoculated plants were used as controls (Michael et al. 2021). The plants were maintained in a growth chamber (25 ℃, 14 h light, and 10 h dark period, RH > 80%). After 10 days, the inoculated plants developed powdery mildew symptoms, whereas the control plants remained symptom-free. The fungus on the inoculated plants was re-isolated, re-identified, and confirmed as E. polygoni based on morphological observations and molecular identification. There is no previous report on E. polygoni causing powdery mildew on White clover in China. The powdery mildew caused by E. polygoni on Red clover has been reported in China and Bulgaria, respectively (Yuan el al.1991; Galina el al. 2017). To our knowledge, this is the first report of powdery mildew caused by E. polygoni on White clover in China. References: 1. Zheng, L., et al. 2018. Plant Dis. 102:628. 2. Mukhtar, G., et al. 2017. Plant Dis.101:1, 246. 3. Braun, U., and Cook, R. T. A. 2012. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht. 4. Michael, R. F., et al. 2021.Plant Dis. First look.( doi.org/ 10.1094/PDIS-09-21-2060-PDN). 5. Yuan, Q. H., el al.1991. Pratacult Sci.05:59 (in Chinese). 6. Galina, N., et al, 2017. BIOTECHNOL Anim Husb.33.127.

8.
Genes (Basel) ; 14(1)2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36672805

RESUMEN

Eupatorium fortunei Turcz, a perennial herb of the Asteraceae family, is one of the horticultural and medicinal plants used for curing various diseases and is widely distributed in China and other Asian countries. It possesses antibacterial, antimetastatic, antiangiogenic, and antioxidant properties along with anticancer potential. However, the intrageneric classification and phylogenetic relationships within Eupatorium have long been controversial due to the lack of high-resolution molecular markers, and the complete chloroplast (cp) genome sequencing has not been reported with new evolutionary insights. In the present study, E. fortunei was used as an experimental material, and its genome was sequenced using high-throughput sequencing technology. We assembled the complete cp genome, and a systematic analysis was conducted for E. fortunei, acquiring the correspondence of its NCBI accession number (OK545755). The results showed that the cp genome of E. fortunei is a typical tetrad structure with a total length of 152,401 bp, and the genome encodes 133 genes. Analysis of the complete cp genomes of 20 Eupatorieae shows that the number of simple sequence repeats (SSRs) ranged from 19 to 36 while the number of long sequence repeats was 50 in all cases. Eleven highly divergent regions were identified and are potentially useful for the DNA barcoding of Eupatorieae. Phylogenetic analysis among 22 species based on protein-coding genes strongly supported that E. fortunei is more closely related to Praxelis clematidea and belongs to the same branch. The genome assembly and analysis of the cp genome of E. fortunei will facilitate the identification, taxonomy, and utilization of E. fortunei as well as provide more accurate evidence for the taxonomic identification and localization of Asteraceae plants.


Asunto(s)
Asteraceae , Eupatorium , Genoma del Cloroplasto , Eupatorium/genética , Asteraceae/genética , Filogenia , Secuenciación Completa del Genoma
9.
Nanomaterials (Basel) ; 11(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34685197

RESUMEN

Recent advances in nanotechnology have opened up new avenues for the controlled synthesis of nanoparticles for biomedical and pharmaceutical applications. Chinese herbal medicine is a natural gift to humanity, and it has long been used as an antibacterial and anticancer agent. This study will highlight recent developments in the phytonanotechnological synthesis of Chinese herbal medicines to utilize their bioactive components in biomedical and therapeutic applications. Biologically synthesized silver nanoparticles (AgNPs) have emerged as a promising alternative to chemical and physical approaches for various biomedical applications. The comprehensive rationale of combinational or synergistic effects of Chinese herb-based AgNPs synthesis was investigated with superior physicochemical and biological properties, and their biomedical applications, including antimicrobial and anticancer activity and wound healing properties. AgNPs can damage the cell ultrastructure by triggering apoptosis, which includes the formation of reactive oxygen species (ROS), DNA disintegration, protein inactivation, and the regulation of various signaling pathways. However, the anticancer mechanism of Chinese herbal medicine-based AgNPs is more complicated due to the potential toxicity of AgNPs. Further in-depth studies are required to address Chinese herbs' various bioactive components and AgNPs as a synergistic approach to combat antimicrobial resistance, therapeutic efficiency of drug delivery, and control and prevention of newly emerged diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...