Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscientist ; 28(2): 163-179, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089762

RESUMEN

Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Recuperación de la Función
2.
NPJ Regen Med ; 6(1): 66, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671050

RESUMEN

Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.

3.
Mayo Clin Proc ; 96(6): 1426-1437, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33678411

RESUMEN

OBJECTIVE: To provide precise description of the dorsal and ventral roots orientation along with the main spinal cord anatomical measurements and their segment-specific variations. PATIENTS AND METHODS: We collected and analyzed the measurements of the spines, spinal cords, and dorsal and ventral roots (C2-L5) of nine adult cadavers (five males and four females). RESULTS: This study for the first time provides analysis of the dorsal and ventral roots orientation along with spinal cord anatomical measurements and their segment-specific distribution. The results of this study showed less variability in rostral root angles compared with the caudal. Dorsal and ventral rootlets were oriented mostly perpendicular to the spinal cord at the cervical level and had more parallel orientation to the spinal cord at the thoracic and lumbar segments. The number of rootlets per root was greatest at dorsal cervical and lumbar segments. Spinal cord transverse diameter and width of the dorsal columns were largest at cervical segments. The strongest correlation between the spinal cord and vertebrae structures was found between the length of intervertebral foramen to rostral rootlet distance and vertebral bone length. CONCLUSION: These results demonstrate consistent variation in spinal cord anatomical features across all tested subjects. The results of this study can be used to locate spinal roots and main spinal cord landmarks based on bone marks on computed tomography or X-rays. These results could improve stereotactic surgical procedures and electrode positioning for neuromodulation procedures.


Asunto(s)
Médula Espinal/anatomía & histología , Raíces Nerviosas Espinales/anatomía & histología , Anciano de 80 o más Años , Puntos Anatómicos de Referencia/anatomía & histología , Vértebras Cervicales , Femenino , Humanos , Vértebras Lumbares , Masculino , Vértebras Torácicas
4.
Neuroimage ; 221: 117183, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702485

RESUMEN

In this study functional ultrasound (fUS) imaging has been implemented to explore the local hemodynamics response induced by electrical epidural stimulation and to study real-time in vivo functional changes of the spinal cord, taking advantage of the superior spatiotemporal resolution provided by fUS. By quantifying the hemodynamics and electromyographic response features, we tested the hypothesis that the temporal hemodynamics response of the spinal cord to electrical epidural stimulation could reflect modulation of the spinal circuitry and accordingly respond to the changes in parameters of electrical stimulation. The results of this study for the first time demonstrate that the hemodynamics response to electrical stimulation could reflect a neural-vascular coupling of the spinal cord. Response in the dorsal areas to epidural stimulation was significantly higher and faster compared to the response in ventral spinal cord. Positive relation between the hemodynamics and the EMG responses was observed at the lower frequencies of epidural stimulation (20 and 40 Hz), which according to our previous findings can facilitate spinal circuitry after spinal cord injury, compared to higher frequencies (200 and 500 Hz). These findings suggest that different mechanisms could be involved in spinal cord hemodynamics changes during different parameters of electrical stimulation and for the first time provide the evidence that neural-vascular coupling of the spinal cord circuitry could be related to specific organization of spinal cord vasculature and hemodynamics.


Asunto(s)
Potenciales Evocados Motores/fisiología , Hemodinámica/fisiología , Red Nerviosa/fisiología , Acoplamiento Neurovascular/fisiología , Médula Espinal/fisiología , Animales , Electromiografía , Masculino , Red Nerviosa/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Médula Espinal/diagnóstico por imagen , Ultrasonografía
5.
Sci Rep ; 9(1): 16503, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712725

RESUMEN

Integrating multiple assessment parameters of motor behavior is critical for understanding neural activity dynamics during motor control in both intact and dysfunctional nervous systems. Here, we described a novel approach (termed Multifactorial Behavioral Assessment (MfBA)) to integrate, in real-time, electrophysiological and biomechanical properties of rodent spinal sensorimotor network activity with behavioral aspects of motor task performance. Specifically, the MfBA simultaneously records limb kinematics, multi-directional forces and electrophysiological metrics, such as high-fidelity chronic intramuscular electromyography synchronized in time to spinal stimulation in order to characterize spinal cord functional motor evoked potentials (fMEPs). Additionally, we designed the MfBA to incorporate a body weight support system to allow bipedal and quadrupedal stepping on a treadmill and in an open field environment to assess function in rodent models of neurologic disorders that impact motor activity. This novel approach was validated using, a neurologically intact cohort, a cohort with unilateral Parkinsonian motor deficits due to midbrain lesioning, and a cohort with complete hind limb paralysis due to T8 spinal cord transection. In the SCI cohort, lumbosacral epidural electrical stimulation (EES) was applied, with and without administration of the serotonergic agonist Quipazine, to enable hind limb motor functions following paralysis. The results presented herein demonstrate the MfBA is capable of integrating multiple metrics of motor activity in order to characterize relationships between EES inputs that modulate mono- and polysynaptic outputs from spinal circuitry which in turn, can be used to elucidate underlying electrophysiologic mechanisms of motor behavior. These results also demonstrate that proposed MfBA is an effective tool to integrate biomechanical and electrophysiology metrics, synchronized to therapeutic inputs such as EES or pharmacology, during body weight supported treadmill or open field motor activities, to target a high range of variations in motor behavior as a result of neurological deficit at the different levels of CNS.


Asunto(s)
Actividad Motora , Trastornos Psicomotores/etiología , Trastornos Psicomotores/fisiopatología , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Estimulación Eléctrica , Terapia por Estimulación Eléctrica , Femenino , Humanos , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Condicionamiento Físico Animal , Trastornos Psicomotores/terapia , Ratas , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología
6.
Front Neurol ; 10: 279, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972010

RESUMEN

This study presents the first implementation of functional ultrasound (fUS) imaging of the spinal cord to monitor local hemodynamic response to epidural electrical spinal cord stimulation (SCS) on two small and large animal models. SCS has been successfully applied to control chronic refractory pain and recently was evolved to alleviate motor impairment in Parkinson's disease and after spinal cord injury. At present, however, the mechanisms underlying SCS remain unclear, and current methods for monitoring SCS are limited in their capacity to provide the required sensitivity and spatiotemporal resolutions to evaluate functional changes in response to SCS. fUS is an emerging technology that has recently shown promising results in monitoring a variety of neural activities associated with the brain. Here we demonstrated the feasibility of performing fUS on two animal models during SCS. We showed in vivo spinal cord hemodynamic responses measured by fUS evoked by different SCS parameters. We also demonstrated that fUS has a higher sensitivity in monitoring spinal cord response than electromyography. The high spatial and temporal resolutions of fUS were demonstrated by localized measurements of hemodynamic responses at different spinal cord segments, and by reliable tracking of spinal cord responses to patterned electrical stimulations, respectively. Finally, we proposed optimized fUS imaging and post-processing methods for spinal cord. These results support feasibility of fUS imaging of the spinal cord and could pave the way for future systematic studies to investigate spinal cord functional organization and the mechanisms of spinal cord neuromodulation in vivo.

7.
Front Neuroanat ; 11: 82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075183

RESUMEN

In this study, the neuroanatomy of the swine lumbar spinal cord, particularly the spatial orientation of dorsal roots was correlated to the anatomical landmarks of the lumbar spine and to the magnitude of motor evoked potentials during epidural electrical stimulation (EES). We found that the proximity of the stimulating electrode to the dorsal roots entry zone across spinal segments was a critical factor to evoke higher peak-to-peak motor responses. Positioning the electrode close to the dorsal roots produced a significantly higher impact on motor evoked responses than rostro-caudal shift of electrode from segment to segment. Based on anatomical measurements of the lumbar spine and spinal cord, significant differences were found between L1-L4 to L5-L6 segments in terms of spinal cord gross anatomy, dorsal roots and spine landmarks. Linear regression analysis between intersegmental landmarks was performed and L2 intervertebral spinous process length was selected as the anatomical reference in order to correlate vertebral landmarks and the spinal cord structures. These findings present for the first time, the influence of spinal cord anatomy on the effects of epidural stimulation and the role of specific orientation of electrodes on the dorsal surface of the dura mater in relation to the dorsal roots. These results are critical to consider as spinal cord neuromodulation strategies continue to evolve and novel spinal interfaces translate into clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...