Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570710

RESUMEN

New substituted [30]trithiadodecaazahexaphyrines (hemihexaphyrazines) were synthesized by a crossover condensation of 2,5-diamino-1,3,4-thiadiazole with 4-chloro-5-(2,6-diisopropylphenoxy)- or 4,5-bis-(2,6-diisopropylphenoxy)phthalonitriles. The compounds were characterized by 1H-, 13C-NMR, including COSY, HMBC, and HSQC spectroscopy, MALDI TOF spectrometry, elemental analysis, IR and UV-Vis absorbance and fluorescence techniques.

2.
Inorg Chem ; 60(13): 9857-9868, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34128654

RESUMEN

Metal complexes of trithiadodecaazahexaphyrin (Hhp) that contain MII3O clusters inside a π-extended trianionic (Hhp3-) macrocycle have been prepared. Studies of the magnetic properties of NiII3O(Hhp) and CuII3O(Hhp) reveal a diamagnetic and EPR-silent trianionic (Hhp3-) macrocycle and diamagnetic NiII3(O2-) or paramagnetic CuII3(O2-) tetracations. The positive charge of MII3O(Hhp) is compensated by one acetate anion {MII3O(Hhp)}+(CH3CO2-). The three-electron reduction of {MII3O(Hhp)}+ yields {cryptand(Cs+)}2{NiII2NiIO(Hhp5-)}2-·2C7H8 (1) and {cryptand(Cs+)}2{CuII3O(Hhp•6-)}2-·C7H8 (2) crystalline salts. The magnetic properties of 1 reveal the formation of Hhp5- and the reduction of nickel(II) to the paramagnetic NiI ion (S = 1/2), which is accompanied by the formation of the {NiII2NiIO(Hhp5-)}2- dianion. As a result, the magnetic moment of 1 is 1.68 µB in the 20-220 K range, and a broad EPR signal of NiI was observed. The Hhp5- macrocycle has a singlet ground state, but the increase in the magnitude of the magnetic moment of 1 above 220 K is attributed to the population of the triplet excited state in Hhp5-. The {NiII2NiIO(Hhp5-)}2- dianion is transferred from the doublet excited state to the quartet excited state with an energy gap of 1420 ± 50 K. Salt 1 also shows an unusually strong low-energy NIR absorption, which was observed at 1000-2200 nm. In 2, a highly reduced Hhp•6- radical hexaanion (S = 1/2) coexists with a CuII3(O2-) cluster (S = 1/2) in the {CuII3O(Hhp•6-)}2- dianions. The dianions have a triplet ground state with antiferromagnetic exchange between two S = 1/2 spins with J = -6.4 cm-1. The reduction of Hhp in both salts equalizes the initially alternated C-N bonds, supporting the increase in the Hhp macrocycle electron delocalization.

3.
Chem Asian J ; 15(1): 61-65, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743582

RESUMEN

Reduction of free-base [30]trithia-2,3,5,10,12,13,15,20,22,23,25,30-dodecaazahexaphyrin (H3 Hhp) yields {cryptand[2.2.2](K)}2 {(K)(H3 Hhp)2 }⋅4C6 H4 Cl2 (1) containing double-decker {(K)(H3 Hhp)2 }⋅2- radical dianions, whose structure was elucidated using X-ray diffraction. Potassium ion forms 12 short (K+ )⋅⋅⋅N(H3 Hhp) contacts with two H3 Hhp macrocycles in the 3.048-3.157 Šrange. Dianions have S=1/2 spin state manifesting an effective magnetic moment of 1.64 µB at 300 K and a narrow Lorentzian electron paramagnetic resonance signal. Quantum chemical calculations support the ionic nature of the (K+ )-N(H3 Hhp) interactions and the nearly equal distribution of the -1.5 charge over each macrocycle. H3 Hhp takes the role of an aza-crown ether in free-base reduced state and forms a new type of double-decker complex.

4.
J Am Chem Soc ; 139(40): 14129-14136, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28889740

RESUMEN

Expanded porphyrins are large-cavity macrocycles with enormous potential in coordination chemistry, anion sensing, photodynamic therapy, and optoelectronics. In the last two decades, the surface science community has assessed the physicochemical properties of tetrapyrrolic-like macrocycles. However, to date, the sublimation, self-assembly and atomistic insights of expanded porphyrins on surfaces have remained elusive. Here, we show the self-assembly on Au(111) of an expanded aza-porphyrin, namely, an "expanded hemiporphyrazine", through a unique growth mechanism based on long-range orientational self-assembly. Furthermore, a spatially controlled "writing" protocol on such self-assembled architecture is presented based on the STM tip-induced deprotonation of the inner protons of individual macrocycles. Finally, the capability of these surface-confined macrocycles to host lanthanide elements is assessed, introducing a novel off-centered coordination motif. The presented findings represent a milestone in the fields of porphyrinoid chemistry and surface science, revealing a great potential for novel surface patterning, opening new avenues for molecular level information storage, and boosting the emerging field of surface-confined coordination chemistry involving f-block elements.

5.
J Phys Chem A ; 120(44): 8853-8861, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27797521

RESUMEN

For the first time, the molecular structure of 3-aminophthalonitrile with unique electronic properties has been determined by the gas electron diffraction (GED) method supported by a mass spectrometric analysis of the gas phase. Moreover, it has been optimized at the high-level quantum-chemical coupled-cluster theory, CCSD(T), in conjunction with the triple-ζ basis set. The equilibrium structure has been determined from the GED data taking into account harmonic and anharmonic vibrational corrections estimated from the quantum-chemical force field (up to cubic terms). The computed CCSD(T) structure has been corrected for the core-core and core-valence electron-correlation effects estimated at the MP2 level and extrapolated to the basis set of quadruple-ζ quality. A remarkable agreement between the experimental and theoretical equilibrium structural parameters (bond lengths and angles) points to a high accuracy of both the molecular structure and applied theories. The high accuracy of structure computations and experimental determination allows the observation of structural changes due to the intramolecular charge transfer predicted by natural bond orbital (NBO) calculations. According to the NBO analysis, the amino group is the electron-donating substituent, whereas the nitrile groups are able to withdraw the π electrons from the benzene ring. Noticeable variations in the structural parameters are also explained by the interaction of σ → π* orbitals of the nearest C≡N and N-H bonds.

6.
J Am Chem Soc ; 132(37): 12991-9, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20806917

RESUMEN

Thirty π-electron-expanded hemiporphyrazines 1a-c have been prepared by crossover condensation reaction of 2,5-diamino-1,3,4-thiadiazole and the corresponding phthalonitrile (3) or diiminoisoindoline (4) derivatives. The expanded azaporphyrin hexamers have been unequivocally characterized by means of spectroscopic, crystallographic, and electrochemical techniques. Weak intramolecular hydrogen bonding imposes a planar conformation to macrocycles. However, the overall electronic delocalization is low, and the nature of the resulting [30]heteroannulene is nonaromatic, as confirmed by NMR studies, XR diffraction analysis, and calculation of the NICS(0) value. Studies on a wide range of physicochemical features including ground, excited, reduced, and oxidized states provide evidence for the wide applicability of these 30 π-electron-expanded hemiporphyrazines in processes involving electron transfer. A key asset of our work is the systematic development of spectroscopic and kinetic markers for the formation and decay of all of the aforementioned species. Thirty π-electron-expanded hemiporphyrazines evolve as broadly absorbing light harvesters with excited state energies of around 2.3 eV that are susceptible to facile one-electron reduction and one-electron oxidation reactions.

7.
Phys Chem Chem Phys ; 11(38): 8570-9, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19774289

RESUMEN

The gas-phase molecular structure of a thiadiazole-containing expanded heteroazaporphyrinoid (C42H39N15S3) has been studied by a synchronous gas electron diffraction and mass spectrometric experiment and density functional theory calculations using the B3LYP hybrid method and cc-pVTZ basis sets. The molecule has an equilibrium structure of C3h symmetry with a planar macrocycle and the thiadiazole rings oriented in such a way that the sulfur atoms point outwards from the inner cavity. The unsubstituted macrocycle (C30H15N15S3) has been studied by DFT computations. An algorithm for building a complete set of internal coordinates, used in the computation of vibrational corrections, is also described.


Asunto(s)
Simulación por Computador , Electrones , Gases/química , Modelos Químicos , Porfirinas/química , Teoría Cuántica , Tiadiazoles/química , Espectrometría de Masas , Modelos Moleculares
8.
Chem Commun (Camb) ; (30): 3573-5, 2008 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-18654717

RESUMEN

The molecular structure of a macrocycle with a 24-membered ring, a thiadiazole-containing expanded heteroazaporphyrinoid, has been, for the first time, directly characterised by a synchronous gas electron diffraction and mass spectrometric experiment and DFT calculations; the molecule has the equilibrium structure of C(3h) symmetry with a planar macrocycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...