Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(6): 3146-3156, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36426592

RESUMEN

BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus. RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P < 0.05) was observed between Z and ZF: most of the sugars and isoflavone glycosides were found only in Z, while more amino acids and organic acids were found in ZF. An additional four metabolites clustered as C-glycosylflavonoids were discovered from MS/MS-based molecular networking. CONCLUSION: Chemical profiles of non-organic and organic soybeans exhibited no significant difference. However, the metabolite profile of the unfermented soybeans, which were higher in sugars, shifted to higher amino acid and organic acid content after fermentation, thereby potentially enhancing their nutritional value. © 2022 Society of Chemical Industry.


Asunto(s)
Glycine max , Isoflavonas , Cromatografía Liquida , Fermentación , Glycine max/química , Espectrometría de Masas en Tándem , Metabolómica , Aminoácidos/análisis , Isoflavonas/metabolismo , Rhizopus/metabolismo , Espectroscopía de Resonancia Magnética
2.
J Fish Biol ; 102(2): 358-372, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36333916

RESUMEN

Despite the use of Terminalia catappa (TC) leaf by traditional fish farmers around the world to improve the health status of cultured fish, there is a paucity of information on comprehensive metabolite profile and the maximum safe dose of the plant. This study aims at profiling the methanol leaf extract of T. catappa, quantifying total phenolic content (TPC) as well as the total flavonoid content (TFC) and evaluating its acute toxicity on blood, plasma biochemical parameters and histopathology of some vital organs in red hybrid tilapia (Oreochromis sp.). The experimental fish were acclimatised for 2 weeks and divided into six groups. Group (1) served as a control group and was administered 0.2 ml,g-1 of phosphate buffer saline (PBS). Groups 2-6 were orally administered T. catappa leaf extracts (0.2 ml.50 g-1 ) in the following sequence; 31.25, 62.5, 125, 250 and 500 mg.kg-1 body weight. The metabolites identified in T. catappa using liquid chromatography-tandem mass electrospray ionisation spectrometry (LC-ESI-MS/MS) revealed the presence of organic acids, hydrolysable tannins, phenolic acids and flavonoids. Phenolic quantification revealed reasonable quantity of phenolic compounds (217.48 µg GAEmg-1 for TPC and 91.90 µg. QCEmg-1 for TFC). Furthermore, there was no significant difference in all the tested doses in terms of blood parameters and plasma biochemical analysis except for the packed cell volume (PCV) at 500 mg.kg-1 when compared to the control. Significant histopathological changes were observed in groups administered with the extract at 125, 250 and 500 mg.kg-1 doses. To a very large extent it is therefore safe to administer the extract at 31.25 and 62.5 mg.kg-1 in tilapia.


Asunto(s)
Cíclidos , Terminalia , Tilapia , Animales , Extractos Vegetales/química , Terminalia/química , Espectrometría de Masas en Tándem
3.
Nat Prod Commun ; 7(8): 1033-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22978223

RESUMEN

Two new phloroglucinol derivatives, identified as anthuminoate (1) and anthuminone (2), were isolated from the ichthyotoxic ethyl acetate fraction of Syzygium polyanthum leaves. In addition, bioassay-guided fractionation followed by dereplication of the photocytotoxic fraction of this plant part has resulted in the identification of five known pheophorbides as the bioactive constituents. The compounds were identified as pheophorbide-a, methyl pheophorbide-a, methyl hydroxypheophorbide-a, pheophorbide-b and hydroxypheophorbide-b. Inhibition of cell viability shown by the compounds ranged from 83.3 to 86.1% at a test concentration of 5 microg/mL. This shows that Syzygium polyanthum leaves are a potential new source in the studies of photocytotoxicity for photodynamic therapy.


Asunto(s)
Clorofila/análogos & derivados , Floroglucinol/análogos & derivados , Hojas de la Planta/química , Syzygium/química , Clorofila/química , Estructura Molecular , Floroglucinol/química
4.
Phytochemistry ; 64(8): 1345-9, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14629998

RESUMEN

Three trijugin-type limonoids, sandrapins A, B and C, were isolated from the leaves of Sandoricum koetjape and their structures, which are related to capensolactones, were elucidated by a detailed 2D-NMR spectroscopic analysis.


Asunto(s)
Limoninas/química , Meliaceae/química , Limoninas/aislamiento & purificación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA