Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Microorganisms ; 12(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674579

RESUMEN

The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.

2.
Curr Protoc ; 4(1): e913, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38230543

RESUMEN

Environmentally enriched housing (EE) provides a stimulating and species-typical environment that enhances brain plasticity and cognition, while reducing disease severity in laboratory animals. However, standardizing EE protocols has been challenging due to issues such as variability, high pricing, or limited laboratory space. To address these challenges, we present a replicable and cost-efficient cage protocol that is accessible to researchers with limited resources and space constraints. The protocol is designed to provide a stimulating and species-typical environment for the animals. It incorporates elements such as social interaction, physical exercise, cognitive stimulation, manipulable objects, environmental variability, and sensory stimulation. As evidenced in our previous studies using our protocol, users can expect to observe similar neuroplastic and health-wise benefits that accompany EE experimental paradigms. These included straightforward step-by-step guide, which allows for construction of functional EE cages in under 8 hr. Basic knowledge of 3D printing and laser cutting is required, but no advanced skills are necessary. The protocol enables researchers to create stimulating and replicable environments that promote animal welfare, enhance brain plasticity, and yield valuable experimental results for low cost. © 2024 Wiley Periodicals LLC. Basic Protocol: An effective and cost-efficient environmental enrichment cage designed to encourage standardization amongst laboratory protocols.


Asunto(s)
Cognición , Ambiente , Ratones , Animales , Ejercicio Físico
3.
J Neuroimmunol ; 385: 578234, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944208

RESUMEN

CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.


Asunto(s)
Encéfalo , Proteína Cofactora de Membrana , Animales , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Antiinfecciosos/farmacología , Encéfalo/metabolismo , Lipopolisacáridos/farmacología , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Glicoproteínas de Membrana , Ratones Endogámicos
4.
Brain Res Bull ; 200: 110701, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422090

RESUMEN

Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Adolescente , Humanos , Masculino , Femenino , Pubertad/fisiología , Caracteres Sexuales , Encéfalo
5.
Gen Comp Endocrinol ; 340: 114324, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247825

RESUMEN

Pubertal stress causes enduring sexual behavior dysfunction in males and females, but the underlying mechanism remains unknown. These changes may arise from pubertal programming of the hypothalamic-pituitary-gonadal axis. Previous findings show that stress exposure downregulates the hypothalamic-pituitary-gonadal axis, particularly through the reduction of the neuropeptide kisspeptin (Kiss1) and its receptor (Kiss1R). Although acute changes in kiss1 and Kiss1r genes have been observed following pubertal immune stress, it is unclear whether immune stress-induced downregulation of kiss1 and kiss1r persists beyond puberty. The current study investigated the enduring sex-specific consequences of lipopolysaccharide on the expression of Kiss1 and Kiss1r in 160 pubertal or adult mice at multiple time points. Six-week and 10-week-old male and female mice were treated with either saline or with lipopolysaccharide. Mice were euthanized either 8 h or 4 weeks following treatment. Although we did not identify any sex differences, our results revealed that lipopolysaccharide treatment decreases hypothalamic Kiss1 and Kiss1r in both pubertal and adult mice within 8 h of treatment. The decreased hypothalamic Kiss1 expression persists 4 weeks later only in mice treated with lipopolysaccharide during puberty. Our findings highlight the age-dependent vulnerability of the hypothalamic-pituitary-gonadal axis to immune stress, providing a better understanding of the mechanisms implicated in allostatic shift during immune stress. Finally, our findings also show the effects of immune stress on various components of the hypothalamic-pituitary-gonadal axis, which could have implications for sexual and fertility-related dysfunctions.


Asunto(s)
Kisspeptinas , Lipopolisacáridos , Ratones , Animales , Femenino , Masculino , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética , Lipopolisacáridos/toxicidad , Eje Hipotálamico-Pituitario-Gonadal , Maduración Sexual/genética
6.
Brain Behav Immun ; 110: 297-309, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914014

RESUMEN

Puberty is a critical period of development that is marked by the maturation of the stress and immune systems. There are marked age and sex differences in peripheral and central inflammatory responses to an immune challenge between pubertal and adult mice. Given the strong link between the gut microbiome and immune system, it is possible that the age and sex differences in immune responses are mediated by age and sex differences in gut microbial composition. The current study investigated whether cohousing adult and pubertal CD1 mice through three weeks of pair-housing, with the potential for microbiome exchange via coprophagy and other close contact, could mitigate age-dependent immune responses. Cytokine concentrations in the blood and cytokine mRNA expression in the brain were assessed following exposure to the immune challenge lipopolysaccharide (LPS). The results show that all mice displayed increased cytokine concentrations in serum and central cytokine mRNA expression in the hippocampus, hypothalamus and prefrontal cortex (PFC) at eight hours following LPS treatment. Pubertal male and female mice, that were pair-housed with a pubertal counterpart, displayed lower cytokine concentrations in serum and lower cytokine mRNA expression in the brain compared to adult mice that were pair-housed with an adult counterpart. However, when adult and pubertal mice were pair-housed, the age differences in both peripheral cytokine concentrations and central cytokine mRNA expression were mitigated. We also found that pair-housing adult and pubertal mice eliminated the age difference in gut bacterial diversity. These results suggest that microbial composition could be involved in modulating these age-associated immune responses and thus may represent a potential therapeutic target.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Femenino , Masculino , Animales , Lipopolisacáridos/farmacología , Vivienda , Inmunidad , Citocinas/metabolismo , ARN Mensajero
8.
Brain Res ; 1806: 148283, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801452

RESUMEN

Puberty is a critical period of cortical reorganization and increased synaptogenesis. Healthy cortical reorganization and synaptic growth require sufficient environmental stimuli and minimalized stress exposure during pubertal development. Exposure to impoverished environments or immune challenges impact cortical reorganization and reduce the expression of proteins associated with neuronal plasticity (BDNF) and synaptogenesis (PSD-95). Environmentally enriched (EE) housing includes improved social-, physical-, and cognitive stimulation. We hypothesized that enriched housing environment would mitigate pubertal stress-induced decreases in BDNF and PSD-95 expressions. Three-week-old male and female CD-1 mice (n = 10 per group) were housed for three weeks in either EE, social or deprived housing conditions. At 6 weeks of age, mice were treated with either lipopolysaccharide (LPS) or saline eight hours prior to tissue collection. Male and female EE mice displayed greater BDNF and PSD-95 expressions in the medial prefrontal cortex and hippocampus compared to socially housed and deprived housed mice. LPS treatment decreased BDNF expression in all the brain regions examined in EE mice, except for the CA3 region of the hippocampus, where EE housing successfully mitigated the pubertal LPS-induced decrease in BDNF expression. Interestingly, LPS-treated mice housed in deprived conditions displayed unexpected increases in BDNF and PSD-95 expressions throughout the medial prefrontal cortex and hippocampus. Both enriched and deprived housing conditions moderate how an immune challenge influences BDNF and PSD-95 expressions in a region-specific manner. These findings also emphasize the vulnerability of brain plasticity during puberty to various environmental factors.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Lipopolisacáridos , Animales , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factores de Transcripción/metabolismo
9.
Front Neuroendocrinol ; 68: 101041, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244525

RESUMEN

Combined oral contraceptives (containing synthetic forms of estradiol and progestins) are one of the most commonly used drugs among females. However, their effects on the gut-brain axis have not been investigated to a great extent despite clear evidence that suggest bi-directional interactions between the gut microbiome and endogenous sex hormones. Moreover, oral contraceptives are prescribed during adolescence, a critical period of development during which several brain structures and systems, such as hypothalamic-pituitary-gonadal axis, undergo maturation. Considering that oral contraceptives could impact the developing adolescent brain and that these effects may be mediated by the gut-brain axis, further research investigating the effects of oral contraceptives on the gut-brain axis is imperative. This article briefly reviews evidence from animal and human studies on the effects of combined oral contraceptives on the brain and the gut microbiota particularly during adolescence.


Asunto(s)
Anticonceptivos Orales Combinados , Etinilestradiol , Femenino , Adolescente , Humanos , Anticonceptivos Orales Combinados/farmacología , Etinilestradiol/farmacología , Salud Mental , Eje Cerebro-Intestino , Hormonas Esteroides Gonadales
10.
Brain Behav Immun ; 107: 62-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174885

RESUMEN

Puberty is a critical period of development characterized by significant brain remodeling and increased vulnerability to immune challenges. Exposure to an immune challenge such as LPS during puberty can result in inflammation and gut dysbiosis which may lead to altered brain functioning and psychiatric illnesses later in life. However, treatment with probiotics during puberty has been found to mitigate LPS-induced peripheral and central inflammation, prevent LPS-induced changes to the gut microbiota and protect against enduring behavioural disorders in a sex-specific manner. Recent findings from our laboratory revealed that pubertal R. badensis subspecies acadiensis (R. badensis subsp. acadiensis) treatment prevents LPS-induced depression-like behavior and alterations in 5HT1A receptor expression in a sex-specific manner. However, the underlying mechanism remains unclear. Thus, the aim of this study was to gain mechanistic insights and to investigate the ability of R. badensis subsp. acadiensis consumption during puberty to mitigate the effects of LPS treatment on the immune system and the gut microbiome. Our results revealed that pubertal treatment with R. badensis subsp. acadiensis reduced sickness behaviors in females more than males in a time-specific manner. It also mitigated LPS-induced increases in pro-inflammatory cytokines in the blood and in TNFα mRNA expression in the prefrontal cortex and the hippocampus of female mice. There were sex-dependent differences in microbiome composition that persisted after LPS injection or R. badensis subsp. acadiensis consumption. R. badensis subsp. acadiensis had greater impact on the microbiota of male mice but female microbiota's were more responsive to LPS treatment. This suggested that female mice microbiota's may be more prone to modulation by this probiotic. These findings emphasize the sex-specific effects of probiotic use during puberty on the structure of the gut microbiome and the immune system and highlight the critical role of gut colonization with probiotics during adolescence on immunomodulation and prevention of the enduring effects of infections.


Asunto(s)
Conducta de Enfermedad , Sistema Linfático , Femenino , Masculino , Ratones , Animales , Inmunidad
11.
Front Behav Neurosci ; 17: 1285475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274549

RESUMEN

The gut-brain axis (GBA) is a network responsible for the bidirectional communication between the central nervous system and the gastrointestinal tract. This multifaceted system is comprised of a complex microbiota, which may be altered by both intrinsic and extrinsic factors. During critical periods of development, these intrinsic and extrinsic factors can cause long-lasting sex-dependent changes in the GBA, which can affect brain structure and function. However, there is limited understanding of how the GBA is altered by stress and how it may be linked to the onset of mental illness during puberty. This article reviews current literature on the relationships between the GBA, the effects of stress during puberty, and the implications for mental health.

12.
Brain Behav Immun Health ; 26: 100543, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36345322

RESUMEN

Exposure to stressors during puberty can cause enduring effects on brain functioning and behaviours related to neurodegeneration. However, the mechanisms underlying these effects remain unclear. The gut microbiome is a complex and dynamic system that could serve as a possible mechanism through which early life stress may increase the predisposition to neurodegeneration. Therefore, the current study was designed to examine the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatments on the cellular mechanisms associated with neurodegenerative disorders in male and female mice. At five weeks of age, male and female CD-1 mice received 200 µL of broad-spectrum antimicrobials or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal (i.p.) injection of either saline or LPS at 6 weeks of age (i.e., pubertal period). Sickness behaviours were recorded and mice were euthanized 8 h post-injection. Following euthanasia, brains and blood samples were collected. The results indicated that puberal antimicrobial and LPS treatment induced sex-dependent changes in biomarkers related to sickness behaviour, peripheral inflammation, intestinal permeability, and neurodegeneration. The findings suggest that pubertal LPS and antimicrobial treatment may increase susceptibility to neurodegenerative diseases later in life, particularly in males.

13.
Microorganisms ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363755

RESUMEN

Puberty is a critical period of development marked by the maturation of the central nervous system, immune system, and hypothalamic-pituitary-adrenal axis. Due to the maturation of these fundamental systems, this is a period of development that is particularly sensitive to stressors, increasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis has been implicated in the development of neurodevelopmental and neurodegenerative disorders. The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration, and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understanding how alterations to the gut microbiome, particularly during critical periods of development (i.e., puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic strategies to prevent them.

14.
Compr Psychoneuroendocrinol ; 11: 100147, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35967925

RESUMEN

Exposure to stress during critical periods of development-such as puberty-is associated with long-term disruptions in brain function and neuro-immune responsivity. However, the mechanisms underlying the effect of stress on the pubertal neuro-immune response has yet to be elucidated. Therefore, the objective of the current study was to investigate the effect antimicrobial and lipopolysaccharide (LPS) treatments on acute immune responsivity in pubertal male and female mice. Moreover, the potential for probiotic supplementation to mitigate these effects was also examined. 240 male and female CD1 mice were treated with one week of antimicrobial treatment (mixed antimicrobials or water) and probiotic treatment (L. rhamnosis R0011 and L. helveticus R0052 or L. helveticus R0052 and B. longum R0175) or placebo at five weeks of age. At six weeks of age (pubertal stress-sensitive period), the mice received a single injection of LPS or saline. Sickness behaviours were assessed, and mice were euthanized 8 h post-injection. Brain, blood, and intestinal samples were collected. The results indicated that the antimicrobial treatment reduced sickness behaviours, and potentiated LPS-induced plasma cytokine concentrations and pro-inflammatory markers in the pre-frontal cortex (PFC) and hippocampus, in a sex-dependent manner. However, probiotics reduced LPS-induced plasma cytokine concentrations along with hippocampal and PFC pro-inflammatory markers in a sex-dependent manner. L. rhamnosis R0011 and L. helveticus R0052 treatment also mitigated antimicrobial-induced plasma cytokine concentrations and sickness behaviours. These findings suggest that the microbiome is an important modulator of the pro-inflammatory immune response during puberty.

15.
Dev Cogn Neurosci ; 57: 101143, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933922

RESUMEN

Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.

16.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884606

RESUMEN

Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.


Asunto(s)
Síndromes de Neurotoxicidad/patología , Neurotoxinas/efectos adversos , Estrés Oxidativo , Animales , Humanos , Síndromes de Neurotoxicidad/etiología
17.
Brain Behav Immun Health ; 13: 100229, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34589744

RESUMEN

The mechanistic relationship between the sexually dimorphic neuroimmune system and the sex-specific outcomes of a pubertal immune challenge is unclear. Therefore, we examined sex differences in the progression of cytotoxic microglial responses and blood-brain barrier (BBB) disruption to a peripubertal lipopolysaccharide (LPS) treatment in brain regions relevant to stress responses and cognitive function. Six-week-old (i.e., stress-sensitive pubertal period) male and female CD-1 mice were treated with LPS (1.5 â€‹mg/kg body weight, ip) or 0.9% saline (LPS-matched volume, ip). Sex and treatment differences in microglial (Iba1+) and apoptotic neuronal (caspase-3+/NeuN+) and non-neuronal (caspase-3+/NeuN-) expression were examined in the hippocampus, medial prefrontal cortex (mPFC), and paraventricular nucleus 24 â€‹h (sickness), one week (symptomatic recovery) and four weeks (early adulthood) post-treatment (n â€‹= â€‹8/group). Microglial morphology was quantified with fractal analyses. Group differences in BBB permeability to 14C-sucrose were examined 24 â€‹h (whole-brain, hippocampus, prefrontal cortex, hypothalamus, and cerebellum) and one week (whole-brain) post-treatment. The acute effects of pubertal LPS were specific to females (i.e., global BBB disruption, altered microglial expression and morphology in the mPFC and hippocampus, increased hippocampal apoptosis). The residual effects of pubertal LPS-induced sickness observed in microglia persisted into adulthood in a sex- and region-specific manner. In addition to highlighting these sex-specific responses of the pubertal neuroimmune system, we report baseline region-specific sex differences in microglia spanning puberty through adulthood. We propose that these sex differences in neuroimmune-neurovascular interactions during the stress-sensitive pubertal period create sex biases in stress-related disorders of brain and behaviour.

18.
Brain Res Bull ; 177: 111-118, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560237

RESUMEN

Puberty is a period of rapid cortical and neuronal development. Stress exposure during puberty programs the hypothalamic-pituitary-adrenal (HPA) axis responsiveness to future stressors. However, programming can result in an enduring maladaptation of the HPA axis activity and can be associated with long-term anxiety- and depression-like behaviours. Probiotic treatment mitigates the effect of stress on mental health, suggesting that the gut microbiome may mediate the programming of the HPA axis. However, the mechanism underlying this effect remains elusive. Thus, we investigated the effect of probiotic exposure on lipopolysaccharide (LPS)-induced programming of the HPA axis and glucocorticoid receptor (GR) expression in the paraventricular (PVN), basolateral amygdala (BLA), piriform cortex (PIR), and medial prefrontal cortex (mPFC). Male and female mice were exposed to either probiotics or control skim milk and were treated with either saline or LPS during puberty. Prior to euthanasia in adulthood, mice were restrained for 30 min. The results showed that pubertal LPS treatment permanently decreased GR expression in the PVN in milk fed control males. However, pubertal probiotic treatment blocked the LPS-induced decrease in GR expression in males. Given that this effect is limited to males, further research is required to better understand sex differences in the interactions between the gut microbiome and the programming of the HPA axis during puberty. Nevertheless, our findings suggest that the gut microbiome influences the neurophysiology of the HPA axis and mediates its programming in pubertal males. The prevention of GR reduction in the male PVN and PIR using probiotics illustrates the complexity of the gut-brain communication and compels continued investigation.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Probióticos , Animales , Corticosterona/metabolismo , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Probióticos/farmacología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo
19.
Brain Res Bull ; 175: 186-195, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333052

RESUMEN

Puberty includes a highly stress-sensitive period with significant sex differences in the neurophysiological and behavioural outcomes of a peripheral immune challenge. Sex differences in the pubertal neuroimmune network's responses to systemic LPS may explain some of these enduring sex-specific outcomes of a pubertal immune challenge. However, the functional implications of these sex-specific neuroimmune responses on the local microenvironment are unclear. Western blots were used to examine treatment- and sex-related changes in expression of regulatory proteins in inflammation (NFκB), cell death (AIF), oxidative stress (SOD-1), and synaptic plasticity (PSD-95) following symptomatic recovery (i.e., one week post-treatment) from pubertal immune challenge. Across the four examined brain regions (i.e., hippocampus, PFC, hypothalamus, and cerebellum), only PSD-95 levels were altered one week post-treatment by the pubertal LPS treatment. Unlike their female counterparts, seven-week-old males showed increased PSD-95 expression in the hippocampus (p < .05). AIF, SOD-1, and NFκB levels in both sexes were unaffected by treatment (all p > .05), which suggests appropriate resolution of NFκB-mediated immune responses to pubertal LPS without stimulating AIF-mediated apoptosis and oxidative stress. We also report a significant male-biased sex difference in PSD-95 levels in the PFC and in cerebellar expression of SOD-1 during puberty (all p < .05). These findings highlight the sex-specific vulnerability of the pubertal hippocampus to systemic LPS and suggest that a pubertal immune challenge may expedite neurodevelopment in the hippocampus in a sex-specific manner.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/biosíntesis , Lipopolisacáridos/farmacología , Maduración Sexual , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Homólogo 4 de la Proteína Discs Large/genética , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Caracteres Sexuales , Superóxido Dismutasa-1/biosíntesis , Superóxido Dismutasa-1/genética
20.
Front Microbiol ; 12: 569119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239502

RESUMEN

A novel bacterium (Rouxiella badensis subsp. acadiensis) isolated from the microbiota of wild blueberry fruit was investigated for its immunomodulation capabilities and intestinal morpho-functional aspects. The whole-genome shotgun sequencing of this bacterium led to its new taxonomy and showed absence of pathogenicity genes. Although the bacterium was used for blueberry-fermentation and enhancing its anti-inflammatory effects on neurodegeneration, diabetes, and cancer, no study has assessed the effect of the bacterium on health. In this study, we used several in vitro and in vivo assays to evaluate the interaction of R. badensis subsp. acadiensis with the intestinal mucosa and its impact on the localized immune response. The strain antibiotic susceptibility has been investigated as well as its tolerance to gastric and intestinal environment and ability to attach to human intestinal epithelial cells (Caco-2 and HT-29). In addition, Balb/c mice were used to explore the immune-modulatory characteristics of the live bacterium at the intestinal level and its impact on the morpho-functional aspects of the intestinal mucosa. In vitro assays revealed the ability of R. badensis subsp. acadiensis to survive the gastric and intestinal simulated conditions and to satisfactorily adhere to the human intestinal epithelial cells. The bacterium was shown to be sensitive to an array of antibiotics. Immuno-modulation studies with mice orally administered with R. badensis subsp. acadiensis showed a higher number of IgA positive cells in the small intestine, a higher concentration of the anti-inflammatory cytokine IL-10 in the intestinal mucosa, as well as an increase in the number of goblet cells. The anti-inflammatory cytokine miR146a was found to be increased in the ileum and brain. Furthermore, it increases the number of goblet cells which contribute to intestinal barrier integrity. Taken together, our findings reflect the ability of the tested bacterium to modulates the intestinal homeostasis and immune response. Detailed safety unpublished studies and genome data support our finding. The strain Rouxiella badensis subsp. acadiensis has been filed in a provisional patent; a U.S. Provisional Application No. 62/916,921 entitled "Probiotics Composition and Methods." Future studies are still needed to validate the potential utilization of this strain as functional food and its potential probiotic effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...