Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489039

RESUMEN

The dorsal telencephalon (i.e. the pallium) exhibits high anatomical diversity across vertebrate classes. The non-mammalian dorsal pallium accommodates various compartmentalized structures among species. The developmental, functional, and evolutional diversity of the dorsal pallium remain unillustrated. Here, we analyzed the structure and epigenetic landscapes of cell lineages in the telencephalon of medaka fish (Oryzias latipes) that possesses a clearly delineated dorsal pallium (Dd2). We found that pallial anatomical regions, including Dd2, are formed by mutually exclusive clonal units, and that each pallium compartment exhibits a distinct epigenetic landscape. In particular, Dd2 possesses a unique open chromatin pattern that preferentially targets synaptic genes. Indeed, Dd2 shows a high density of synapses. Finally, we identified several transcription factors as candidate regulators. Taken together, we suggest that cell lineages are the basic components for the functional regionalization in the pallial anatomical compartments and that their changes have been the driving force for evolutionary diversity.


Asunto(s)
Corteza Cerebral , Telencéfalo , Animales , Corteza Cerebral/metabolismo , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo , Evolución Biológica
2.
Artículo en Inglés | MEDLINE | ID: mdl-37022819

RESUMEN

One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned task by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa.

3.
Zoolog Sci ; 33(3): 246-54, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27268978

RESUMEN

Adult medaka fish (Oryzias latipes) exhibit complex social behaviors that depend mainly on visual cues from conspecifics. The ontogeny of visually-mediated social behaviors from larval/juvenile to adult medaka fish, however, is unknown. In the present study, we established a simple behavioral paradigm to evaluate the swimming proximity to conspecifics based on visual cues in an inter-individual interaction of two medaka fish throughout life. When two fish were placed separately in a cylindrical tank with a concentric transparent wall, the two fish maintained close proximity to each other. A normal fish inside the tank maintained proximity to an optic nerve-cut fish outside of the tank, while the converse was not true. This behavioral paradigm enabled us to quantify visually-induced motivation of a single fish inside the tank. The proximity was detected from larval/juvenile to adult fish. Larval fish, however, maintained close proximity not only to conspecifics, but also to heterospecifics. As the growth stage increased, the degree of proximity to heterospecifics decreased, suggesting that shoaling preferences toward conspecifics and/or visual ability to recognize conspecifics is refined and established according to the growth stage. Furthermore, the proximity of adult female fish was affected by their reproductive status and social familiarity. Only before spawning, adult females maintained closer proximity to familiar males rather than to unfamiliar males, suggesting that proximity was affected by familiarity in a female-specific manner. This simple behavioral paradigm will contribute to our understanding of the neural basis of the development of visually-mediated social behavior using medaka fish.


Asunto(s)
Señales (Psicología) , Oryzias/fisiología , Conducta Social , Natación , Animales , Femenino , Masculino , Factores Sexuales , Conducta Sexual Animal/fisiología
4.
Science ; 343(6166): 91-4, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24385628

RESUMEN

Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Preferencia en el Apareamiento Animal , Neuronas/fisiología , Oryzias/fisiología , Ácido Pirrolidona Carboxílico/análogos & derivados , Reconocimiento en Psicología , Percepción Visual , Animales , Femenino , Masculino , Mutación , Oryzias/genética , Factores Sexuales
5.
PLoS One ; 8(6): e66597, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825546

RESUMEN

BACKGROUND: Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. METHODOLOGY/PRINCIPAL FINDINGS: To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0-1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2-3 dpf embyos compared with 0-1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. CONCLUSIONS/SIGNIFICANCE: We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.


Asunto(s)
Encéfalo/embriología , Ingeniería Genética/métodos , Integrasas/metabolismo , Oryzias/embriología , Oryzias/genética , Recombinación Genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Diferenciación Celular/genética , Embrión no Mamífero/citología , Desarrollo Embrionario/genética , Calor , Rayos Infrarrojos , Integrasas/genética , Rayos Láser , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Regiones Operadoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesos Estocásticos
6.
Biochem Biophys Res Commun ; 423(4): 627-31, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22659737

RESUMEN

Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.


Asunto(s)
Proliferación Celular , Neurogénesis/genética , Oryzias/crecimiento & desarrollo , Telencéfalo/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis , Bromodesoxiuridina/química , Mutación , Oryzias/genética , Supresión Genética , Telencéfalo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA