RESUMEN
PURPOSE: This study aimed to assess the bonding stability of three universal adhesives to a CAD-CAM feldspathic ceramic with or without prior silane application. MATERIALS AND METHODS: The universal adhesives tested were Ambar Universal (FGM), Single Bond Universal (3M), and Ybond Universal (Yller). Scotchbond Multipurpose Plus (3M) was used as a control. The silane used was RelyX Ceramic Primer (3M). Microtensile bond strength (µTBS) to Vitablocs Mark II was measured after 24 h or 6 months of water aging (n = 20). Failure modes were observed through scanning electron microscopy, and pH and degree of C=C conversion (DC) of the adhesives were measured (n = 3). Data were analyzed using one-, two-, and three-way ANOVA. RESULTS: The pH values differed significantly among the adhesives (p < 0.001), while the DC was similar (p = 0.141). The universal adhesives showed significant differences in µTBS, with higher immediate results when using silane and lower results after aging. Notably, a significant decrease in µTBS was observed after 6 months when silane was applied. In contrast, the control adhesive exhibited consistent results between the 24-h and 6-month storage periods. The universal adhesives showed a decrease in µTBS ranging from 25.5% to 40.1% after prolonged storage. Adhesive failures were predominant in all groups. The presence or absence of silane in the adhesive composition did not affect the bonding performance. CONCLUSIONS: The application of a separate silane coupling agent improved the immediate bond strength of universal adhesives to CAD-CAM feldspathic ceramic. However, this bond strength significantly decreased after 6 months of water aging. The bond strength remained stable for universal adhesives when applied without silane after 6 months of aging.
RESUMEN
Resin cement and preheated restorative resin composite may be used for luting laminate veneers. The main advantage of resin composite is increased wear resistance, which could lead to better marginal performance in long term. This article reports a clinical treatment with feldspar laminate veneers luted to the maxillary teeth with preheated resin composite in a private practice. Case was finalized in May 2009 and followed by 10 years. Excellent clinical service and remarkable long-lasting marginal integrity were observed after 123 months. Scanning electron microscopy analysis showed no wear, gaps, or ditching at the margins. Restorative margins showed a smooth transition between ceramic and tooth with no signs of degradation. Preheated resin composite for luting ceramic laminate veneers may be considered an excellent clinical option.
RESUMEN
The purpose of this study was two-fold: (i) to investigate whether the thermal treatment of direct dental resin composites (RCs) using microwave or autoclave heating cycles would modify the materials' strength as compared to the protocol without heating (control); and (ii) to compare the mechanical performance of direct and indirect RCs. Three RCs (from 3M ESPE) were tested: one indirect (Sinfony); and two direct materials (microhybrid - Filtek Z250; and nanofilled - Filtek Z350). Specimens from the direct RCs were prepared and randomly allocated into three groups according to the thermal treatment (n = 10): Control - no thermal treatment was performed; Microwave - the wet heating was performed using a microwave oven; and Autoclave - the wet heating was performed in an autoclave oven. The indirect RC was prepared following the instructions of the manufacturer. All materials were tested using flexural strength, elastic modulus, work of fracture (Wf), microhardness, and scanning electron microscopy (SEM) analyses. Data were analyzed with ANOVA and Tukey as well as Weibull analysis (α = 0.05). The thermal treatments tended to produce slight changes in the topography of direct RCs, especially by the autoclave' wet heating. Overall, the physico-mechanical properties changed after thermal treatment, although this effect was dependent on the type of RC and on the heating protocol. Sinfony showed the lowest modulus and hardness of the study, although it was the most compliant system (higher work of fracture). The load-deflection ability was also greater for the indirect RC. Reliability of the tested materials was similar among each other (p > 0.05). In conclusion, the alternative thermal treatments suggested here may significantly influence some aspects of the mechanical behavior of dental resin composites, with negative effects relying on both the chemical composition of the restorative material as well as on the wet heating protocol used. Clinicians should be aware of the possible effects that additional wet heating of direct resin composites using microwave or autoclave thermal protocols as performed here could have on the overall fracture and mechanical responses during loading circumstances.
Asunto(s)
Resinas Compuestas , Materiales Dentales , Módulo de Elasticidad , Dureza , Ensayo de Materiales , Reproducibilidad de los Resultados , Estrés Mecánico , Propiedades de SuperficieRESUMEN
OBJECTIVE: This study investigated viscosity and thermal kinetics of 10 selected preheated restorative resin composites and the effect of ultrasound energy on film thickness. METHODS: A range of different resin composites was tested: Charisma Diamond, IPS Empress Direct, Enamel Plus HRi, Essentia, Estelite Omega, Filtek Z100, Filtek Z350 XT, Gradia, TPH Spectrum and VisCalor. A flowable resin composite (Opallis Flow) and two resin cements (RelyX Veneer, Variolink Esthetic LC) also were tested. Viscosity (Pa s) was measured at 37 °C and 69 °C (preheating temperature) using a rheometer. Film thickness (µm) was measured before and after application of ultrasound energy. Temperature loss within resin composite following preheating (°C/s) was monitored. Data were statistically analyzed (α = 0.05). RESULTS: Viscosity at 69 °C was lower than at 37 °C for all materials except the flowable resin composite. Preheating reduced viscosity between 47% and 92% for the restorative resin composites, which were generally more viscous than the flowable materials. Film thickness varied largely among materials. All preheated resin composites had films thicker than 50 µm without ultrasound energy. Application of ultrasound reduced film thickness between 21% and 49%. Linear and nonlinear regressions did not identify any relationship between filler loading, viscosity, and/or film thickness. All materials showed quick temperature reduction following preheating, showing maximum temperature loss rates after approximately 10 s. SIGNIFICANCE: Distinct restorative resin composites react differently to preheating, affecting viscosity and film thickness. The overall performance of the preheating technique depends on proper material selection and use of ultrasound energy for reducing film thickness.
Asunto(s)
Resinas Compuestas , Películas Cinematográficas , Esmalte Dental , Cinética , Ensayo de Materiales , Cementos de Resina , ViscosidadRESUMEN
Herein, the effect of different post-pressing times and pressure in two cycles of polymerization on the degree of conversion (DC) of thermally activated acrylic resin (TRRA) is analyzed to optimize the polymerization of this material. After post-pressing for 0, 6, or 12 h, polymerization was performed with or without a pressure of 60 psi (0.41 MPa) in a short (4 h) or a long (11 h) cycle, totaling 12 groups. To determine the DC, PMMA specimens were analyzed by Fourier transform infrared spectroscopy. The influence of each factor alone on the DC was studied by experimental planning. The statistical tests used were three-way ANOVA, t-test, Tukey's test, and Levene's test, with a margin of error of 5%. Two groups prepared with post-pressing times of 12 h had the lowest DC (p < 0.001). Post-pressing times of 0 and 6 h did not yield statistically different results. Pressure increased the DC in only one group (long cycle +12 h, p=0.001). The short cycle resulted in a higher DC than the long cycle in 2 groups (with pressure +0 h, p=0.002; without pressure +6 h, p=0.015), while the long cycle yielded a statistically higher DC in only one group (with pressure +12 h, p < 0.001). The polymerization showed satisfactory DC in all 12 groups. Small differences found among the specimens indicate that the pressure, post-pressing time, and polymerization cycles herein were not influential factors for the DC of PMMA.
RESUMEN
OBJECTIVES: This study was designed to adapt a previously developed in vitro microcosm biofilm model to create carries-affected dentin (CAD) and establish conditions for using the model in bonding studies. MATERIALS AND METHODS: Biofilms were originated from human saliva and grown on dentin discs for 0 (sound dentin), 3, 5, 7, 14, or 21 days under intermittent cariogenic condition (n = 10). At each time point, composite cylinders were bonded to the dentin using self-etch adhesive (Clearfil SE Bond). The response variables were integrated mineral loss (ΔS), lesion depth (LD), shear bond strength (SBS), and failure mode. Data were statistically analyzed (α = 0.05). Bonded interfaces were analyzed by scanning electron microscopy (SEM), and dentin surfaces characterized by infrared spectroscopy (Fourier transform infrared spectroscopy, FTIR). RESULTS: Lower ΔS was found for sound dentin than for CAD in all experimental groups, except for the group under cariogenic challenge for 3 days. The SBS to CAD was significantly lower than control for all cariogenic challenge times. Adhesive failures were predominant in all groups. ΔS and LD had a significant negative correlation with SBS. A significant exponential decay in SBS was associated with increased ΔS values. CAD had lower mineral and amide I content and an irregular hybridization interface compared to sound dentin. CONCLUSIONS: The microcosm biofilm model was able to artificially induce CAD, which imposed challenge to the bonding of the polymeric adhesive material. CLINICAL RELEVANCE: Presence of CAD might interfere with the bonding of polymeric materials. The microcosm biofilm model proposed could be useful for preclinical dentin bonding studies.