Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822888

RESUMEN

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Asunto(s)
Astrocitos , Cilios , Ratones Noqueados , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Cilios/metabolismo , Cilios/efectos de los fármacos , Ratones , Complemento C3/metabolismo , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Apoptosis/efectos de los fármacos
2.
Sci Rep ; 14(1): 10636, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724644

RESUMEN

Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.


Asunto(s)
Sistemas CRISPR-Cas , Factores de Transcripción Forkhead , ARN Guía de Sistemas CRISPR-Cas , Animales , Ratones , Ratas , ARN Guía de Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Timo/metabolismo , Modelos Animales , Blastocisto/metabolismo
3.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179792

RESUMEN

Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, although successful lung formation using interspecies chimeric animals has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. These findings provide useful insights to overcome the barrier of species-specific developmental timing to generate functional lungs in interspecies chimeras.


Asunto(s)
Células Madre Pluripotentes , Ratas , Ratones , Animales , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Blastocisto , Pulmón , Células Epiteliales , Modelos Animales de Enfermedad
4.
iScience ; 26(11): 108257, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37920664

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2023.107887.].

5.
iScience ; 26(10): 107887, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37771660

RESUMEN

Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.

6.
Cell Rep ; 41(11): 111828, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516765

RESUMEN

Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Ratones , Animales , Macrófagos Alveolares , Linfocitos T CD8-positivos , Memoria Inmunológica , Reactividad Cruzada , Pulmón
7.
Sci Rep ; 12(1): 21985, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539541

RESUMEN

The use of mice as experimental animal models has been a practice since the development of genetically engineered mouse models (GEMMs) in the early 1980s. New technologies, including genome editing, have helped in the time- and cost-efficient generation of GEMMs. However, methods for preparing pseudopregnant females, essential for the generation of GEMMs, remain less advanced. This study proposes a new method to achieve simple production of pseudopregnant female mice using a luteinizing hormone-releasing hormone agonist (LHRHa). A 20 µg LHRHa/mouse was identified as the best dose for inducing estrus synchronization. However, the frequency of copulation was 40% on a single injection. With sequential injections of 20 µg LHRHa/mouse on Days-1 and -2, followed by pairing on Day-5, 74% of LHRHa-treated females copulated with male mice. Moreover, LHRHa treatment did not affect fetal and postnatal development. Eventually, successful generation of offspring via embryo transfer was attained using LHRHa-treated pseudopregnant females. LHRHa administration method is efficient in producing pseudopregnant female mice for the generation of GEMMs, and we expect that it will contribute towards advancing the clinical research.


Asunto(s)
Transferencia de Embrión , Sincronización del Estro , Humanos , Embarazo , Masculino , Femenino , Ratones , Animales , Atención Prenatal , Hormona Liberadora de Gonadotropina
8.
Front Immunol ; 13: 935465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844620

RESUMEN

Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.


Asunto(s)
Neoplasias , Vitamina A , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Inmunoterapia , Células T de Memoria , Neoplasias/terapia , Tretinoina/farmacología , Vitamina A/metabolismo
9.
PLoS Genet ; 18(6): e1010241, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35648791

RESUMEN

Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.


Asunto(s)
Proteínas Nucleares , Complejo Sinaptonémico , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Espermatocitos/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Ubiquitina-Proteína Ligasas/genética
10.
iScience ; 25(4): 104118, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402874

RESUMEN

The innate immune system is an immediate defense against infectious pathogens by the production of inflammatory cytokines and other mediators. Deficiencies of epigenetic regulatory enzymes, such as Tet1 and Dnmt1, cause dysregulation of cytokine expression. However, it is unclear if DNA methylation at a single CpG dinucleotide in a specific gene locus can regulate gene expression. In this study, we demonstrated that CpG+286 and CpG+348 in exon 2 of the Il6 gene are similar in various primary mouse cells. In lipopolysaccharide-stimulated condition, hypomethylated CpG+286 promoted Il6 expression whereas deletion of CpG+348 led to a reduction in Il6 expression associated with enhanced CTCF binding to the Il6 locus. Moreover, hypomethylation at CpG+286 in alveolar macrophages from aged mice led to higher Il6 expression in response to LPS compared with young mice. Thus, DNA methylation at specific CpG dinucleotides plays an important regulatory role in Il6 expression.

11.
Exp Anim ; 71(1): 82-89, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34544911

RESUMEN

In mammals, sexual fate is determined by the chromosomes of the male and female gametes during fertilization. Males (XY) or females (XX) are produced when a sperm containing a Y or X-chromosome respectively fertilizes an X-chromosome-containing unfertilized egg. However, sexing of preimplantation stage embryos cannot be conducted visually. To address this, transgenic male mouse models with the ubiquitously expressed green fluorescent protein (GFP) transgene on X- (X-GFP) or Y-chromosomes (Y-GFP) have been established. However, when crossed with wild-type females, sexing of the preimplantation stage embryos by observing the GFP signal is problematic in some cases due to X-inactivation, loss of Y-chromosome (LOY), or loss of transgene fluorescence. In this study, a mouse model with the ubiquitously expressed red fluorescent protein (RFP) transgene on the Y-chromosome was generated since RFP is easily distinguishable from GFP signals. Unfortunately, the ubiquitously expressed tdTomato RFP transgene on the Y-chromosome (Y-RFP) mouse showed the lethal phenotype after birth. No lethal phenotypes were observed when the mitochondrial locating signal N-terminal of tdTomato (mtRFP) was included in the transgene construct. Almost half of the collected fertilized eggs from Y-mtRFP male mice crossed with wild-type females had an RFP signal at the preimplantation stage (E1.5). Therefore, XY eggs were recognized as RFP-positive embryos at the preimplantation stage. Furthermore, 100% sexing was observed at the preimplantation stage using the X-linked GFP/Y-linked RFP male mouse. The established Y-mtRFP mouse models may be used to study sex chromosome related research.


Asunto(s)
Cromosoma X , Cromosoma Y , Animales , Femenino , Proteínas Luminiscentes , Masculino , Ratones , Ratones Transgénicos , Cromosoma X/genética , Cromosoma Y/genética , Proteína Fluorescente Roja
12.
iScience ; 24(7): 102773, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34278272

RESUMEN

As space travel becomes more accessible, it is important to understand the effects of spaceflight including microgravity, cosmic radiation, and psychological stress. However, the effect on offspring has not been well studied in mammals. Here we investigated the effect of 35 days spaceflight on male germ cells. Male mice that had experienced spaceflight exhibit alterations in binding of transcription factor ATF7, a regulator of heterochromatin formation, on promoter regions in testis, as well as altered small RNA expression in spermatozoa. Offspring of space-traveling males exhibit elevated hepatic expression of genes related to DNA replication. These results indicate that spaceflight has intergenerational effect.

13.
Sci Rep ; 11(1): 8297, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859300

RESUMEN

E26 avian leukemia oncogene 2, 3' domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.


Asunto(s)
Mutación del Sistema de Lectura/genética , Fenotipo , Proteína Proto-Oncogénica c-ets-2/genética , Empalme del ARN/genética , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/genética , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Desarrollo Embrionario/genética , Exones/genética , Femenino , Edición Génica/métodos , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/metabolismo , Trofoblastos/patología
14.
Genes Cells ; 26(3): 180-189, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33527666

RESUMEN

TRA98 is a rat monoclonal antibody (mAb) which recognizes a specific antigen in the nuclei of germ cells. mAb TRA98 has been used to understand the mechanism of germ cell development and differentiation in many studies. In mice, the antigen recognized by mAb TRA98 or GCNA1 has been reported to be a GCNA gene product, but despite the demonstration of the immunoreactivity of this mAb in human testis and sperm in 1997, the antigen in humans remains unknown, as of date. To identify the human antigen recognized by mAb TRA98, a human comprehensive wet protein array was developed containing 19,446 proteins derived from human cDNAs. Using this array, it was found that the antigen of mAb TRA98 is not a GCNA gene product, but nuclear factor-κB activating protein (NKAP). In mice, mAb TRA98 recognized both the GCNA gene product and NKAP. Furthermore, conditional knockout of Nkap in mice revealed a phenotype of Sertoli cell-only syndrome. Although NKAP is a ubiquitously expressed protein, NKAP recognized by mAb TRA98 in mouse testis was SUMOylated. These results suggest that NKAP undergoes modifications, such as SUMOylation in the testis, and plays an important role in spermatogenesis.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos/metabolismo , Células Germinativas/metabolismo , Análisis por Matrices de Proteínas , Animales , Humanos , Masculino , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Testículo/metabolismo
15.
Front Cell Dev Biol ; 9: 810118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096839

RESUMEN

Fertilization occurs as the culmination of multi-step complex processes. First, mammalian spermatozoa undergo the acrosome reaction to become fusion-competent. Then, the acrosome-reacted spermatozoa penetrate the zona pellucida and adhere to and finally fuse with the egg plasma membrane. IZUMO1 is the first sperm protein proven to be essential for sperm-egg fusion in mammals, as Izumo1 knockout mouse spermatozoa adhere to but fail to fuse with the oolemma. However, the IZUMO1 function in other species remains largely unknown. Here, we generated Izumo1 knockout rats by CRISPR/Cas9 and found the male rats were infertile. Unlike in mice, Izumo1 knockout rat spermatozoa failed to bind to the oolemma. Further investigation revealed that the acrosome-intact sperm binding conceals a decreased number of the acrosome-reacted sperm bound to the oolemma in Izumo1 knockout mice. Of note, we could not see any apparent defects in the binding of the acrosome-reacted sperm to the oolemma in the mice lacking recently found fusion-indispensable genes, Fimp, Sof1, Spaca6, or Tmem95. Collectively, our data suggest that IZUMO1 is required for the sperm-oolemma binding prior to fusion at least in rat.

16.
Neurosci Res ; 165: 14-25, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32283105

RESUMEN

Sleep is affected by the environment. In rodents, changes in the amount of rapid eye movement sleep (REMS) can precede those of other sleep/wake stages. The molecular mechanism underlying the dynamic regulation of REMS remains poorly understood. Here, we focused on the sublaterodorsal nucleus (SLD), located in the pontine tegmental area, which plays a crucial role in the regulation of REMS. We searched for genes selectively expressed in the SLD and identified copine-7 (Cpne7), whose involvement in sleep was totally unknown. We generated Cpne7-Cre knock-in mice, which enabled both the knockout (KO) of Cpne7 and the genetic labeling of Cpne7-expressing cells. While Cpne7-KO mice exhibited normal sleep under basal conditions, the amount of REMS in Cpne7-KO mice was larger compared to wildtype mice following cage change or water immersion and restraint stress, both of which are conditions that acutely reduce REMS. Thus, it was suggested that copine-7 is involved in negatively regulating REMS under certain conditions. In addition, chemogenetically activating Cpne7-expressing neurons in the SLD reduced the amount of REMS, suggesting that these neurons negatively regulate REMS. These results identify copine-7 and Cpne7-expressing neurons in the SLD as candidate molecular or neuronal components of the regulatory system that controls REMS.


Asunto(s)
Sueño REM , Agua , Animales , Proteínas Portadoras , Inmersión , Ratones , Sueño
17.
Genesis ; 58(9): e23386, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32645254

RESUMEN

Random gene trapping is the application of insertional mutagenesis techniques that are conventionally used to inactivate protein-coding genes in mouse embryonic stem (ES) cells. Transcriptionally silent genes are not effectively targeted by conventional random gene trapping techniques, thus we herein developed an unbiased poly (A) trap (UPATrap) method using a Tol2 transposon, which preferentially integrated into active genes rather than silent genes in ES cells. To achieve efficient trapping at transcriptionally silent genes using random insertional mutagenesis in ES cells, we generated a new diphtheria toxin (DT)-mediated trapping vector, DTrap that removed cells, through the expression of DT that was induced by the promoter activity of the trapped genes, and selected trapped clones using the neomycin-resistance gene of the vector. We found that a double-DT, the dDT vector, dominantly induced the disruption of silent genes, but not active genes, and showed more stable integration in ES cells than the UPATrap vector. The dDT vector disrupted differentiated cell lineage genes, which were silent in ES cells, and labeled trapped clone cells by the expression of EGFP upon differentiation. Thus, the dDT vector provides a systematic approach to disrupt silent genes and examine the cellular functions of trapped genes in the differentiation of target cells and development.


Asunto(s)
Elementos Transponibles de ADN , Toxina Diftérica/genética , Marcación de Gen/métodos , Células Madre Embrionarias de Ratones/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mutagénesis , Mutagénesis Insercional
18.
Oncotarget ; 11(22): 2061-2073, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32547704

RESUMEN

The application of pluripotent stem cells is expected to contribute to the elucidation of unknown mechanism of human diseases. However, in vitro induction of organ-specific cells, such as pancreas and liver, is still difficult and the reproduction of their disorders in a model has been unfeasible. To study the mechanism of human hereditary pancreatitis (HP), we here performed the blastocyst complementation (BC) method. In the BC method, mouse embryonic stem (ES) cells harboring CRISPR/CAS9-mediated mutations in the Prss1 gene were injected into blastocysts with deficient Pdx1 gene, which is a critical transcription factor in the development of pancreas. The results showed that trypsin was activated extremely in Prss1-mutant mice. This implied that the mouse phenotype mimics that of human HP and that the BC method was useful for the reproduction and study of pancreatic disorders. The present study opens the possibility of investigating uncharacterized human diseases by utilizing the BC method.

19.
Biol Reprod ; 102(4): 975-983, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31916570

RESUMEN

In mammals, more than 2000 genes are specifically or abundantly expressed in testis, but gene knockout studies revealed several are not individually essential for male fertility. Tesmin (Metallothionein-like 5; Mtl5) was originally reported as a testis-specific transcript that encodes a member of the cysteine-rich motif containing metallothionein family. Later studies showed that Tesmin has two splicing variants and both are specifically expressed in male and female germ cells. Herein, we clarified that the long (Tesmin-L) and short (Tesmin-S) transcript forms start expressing from spermatogonia and the spermatocyte stage, respectively, in testis. Furthermore, while Tesmin-deficient female mice are fertile, male mice are infertile due to arrested spermatogenesis at the pachytene stage. We were able to rescue the infertility with a Tesmin-L transgene, where we concluded that TESMIN-L is critical for meiotic completion in spermatogenesis and indispensable for male fertility.


Asunto(s)
Fertilidad/genética , Metalotioneína/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Azoospermia/congénito , Azoospermia/genética , Azoospermia/metabolismo , Células COS , Chlorocebus aethiops , Masculino , Meiosis/genética , Metalotioneína/genética , Ratones , Ratones Noqueados , Espermatocitos/metabolismo , Espermatogonias/metabolismo
20.
Development ; 146(21)2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31597657

RESUMEN

Genetic lineage-tracing techniques are powerful tools for studying specific cell populations in development and pathogenesis. Previous techniques have mainly involved systems for tracing a single gene, which are limited in their ability to facilitate direct comparisons of the contributions of different cell lineages. We have developed a new combinatorial system for tracing all three germ layers using self-cleaving 2A peptides and multiple site-specific recombinases (SSRs). In the resulting TRiCK (TRiple Coloured germ layer Knock-in) mice, the three germ layers are conditionally and simultaneously labelled with distinct fluorescent proteins via embryogenesis. We show that previously reported ectopic expressions of lineage markers are the outcome of secondary gene expression. The results presented here also indicate that the commitment of caudal axial stem cells to neural or mesodermal fate proceeds without lineage fluctuations, contrary to the notion of their bi-potency. Moreover, we developed IMES, an optimized tissue clearing method that is highly compatible with a variety of fluorescent proteins and immunostaining, and the combined use of TRiCK mice and IMES can facilitate comprehensive analyses of dynamic contributions of all three germ layers.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Estratos Germinativos/citología , Animales , Encéfalo/metabolismo , Cruzamientos Genéticos , ADN Nucleotidiltransferasas/metabolismo , Células Madre Embrionarias/citología , Endodermo/citología , Endotelio Vascular/citología , Femenino , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Corazón/embriología , Humanos , Imagenología Tridimensional , Hígado/embriología , Masculino , Mesodermo/citología , Ratones , Ratones Endogámicos C57BL , Miocardio/citología , Placa Neural/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...