Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Georgian Med News ; (337): 125-131, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37354685

RESUMEN

Prolonged vibration exposure leads to alterations of the central control mechanisms of both the vestibulo-ocular and the vestibulo-autonomic systems, including a change in the hypothalamic-vestibular relationships associated, in particular, with the supraoptic nucleus and paraventricular nucleus. Post-vibration disturbances of the vestibular function are largely due to adaptive changes in neurotransmitter activity. The dynamics of spike activity of single neurons of the superior vestibular nucleus (SVN) in response to high-frequency stimulation of the paraventricular and supraoptic hypothalamic nuclei after long-term vibration exposure were analyzed. Analysis of impulse activity revealed the prevalence of tetanic potentiation in the responses of SVN neurons to high-frequency stimulation of paraventricular and supraoptic nuclei of rats. Exposure of animals to vibration led to a decrease in the number of neurons with tetanic potentiations and significant dominance of post-tetanic potentiation. Morphological and histochemical results showed that under hypothalamic stimulation in the SVN neurons of rats exposed to vibration, there is an increase in metabolism and dephosphorylation processes in the cellular structures of the studied brain area, which ultimately provides optimal conditions for the processes of cell survival and regeneration.


Asunto(s)
Hipotálamo , Vibración , Ratas , Animales , Hipotálamo/fisiología , Núcleos Vestibulares/metabolismo , Neuronas/fisiología , Encéfalo
2.
Metab Brain Dis ; 38(1): 269-286, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271967

RESUMEN

A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.


Asunto(s)
Acetilcolinesterasa , Fructosa , Ratas , Animales , Fructosa/farmacología , Fructosa/metabolismo , Microcirculación , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Dieta , Neuronas/metabolismo
3.
BMC Complement Altern Med ; 19(1): 88, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023287

RESUMEN

BACKGROUND: Stevia rebaudiana Bertoni has various pharmacological actions, which includes antidiabetic, antioxidant, anti-inflammatory activities. The superoxide and consequently NADPH oxidase (Nox) are relevant targets involved in biological effects of Stevia. The presence of NADPH-containing superoxide-producing lipoprotein (suprol) in Stevia leaves has not yet been tested. The mechanism of producing superoxide radicals (O2-) by suprol was determined in vitro, which is associated with the electron transfer from NADPH in the composition of suprol by traces of transition metal ions (Fe3+ or Cu2+) to molecular oxygen, turning it into O2-. It is expected that the therapeutic efficacy of Stevia leaves is caused by specific activity of superoxide-producing lipoprotein fraction. METHODS: For the first time, from the dry leaves of Stevia the NADPH-containing superoxide-producing lipoprotein was isolated and purified. The specific content of suprol (milligrams in 1 g of Stevia leaves- mg/g) was determined after desalination of suprol and lyophilization. RESULTS: According to the method provided, the specific content of the isolated suprol from Stevia's leaves was up to 4.5 ± 0.2 mg / g (yields up to 68.5 ± 4.7%, p < 0.05, n = 6). Nox forms a stable complex with suprol. The optical absorption spectrum of the Nox-suprol complex represents the overlapping suprol and Nox spectra, with a certain background increase and characteristic features of optical absorption for Nox. Due to O2- producing capacity suprol-Nox complex discolors KMnO4 solutions, Coomassie brilliant blue, restores nitrotetrazolium blue to formazan and oxidizes epinephrine to adrenochrome. The oxidation activity of adrenaline is 50.3 ± 5.1 U / mg / ml (p < 0.05, n = 6). CONCLUSION: Superoxide-producing lipoprotein fraction-Nox complex from Stevia leaves (membranes) can modulate redox regulated signaling pathways and may play a positive role in type-2 diabetes by means of adrenaline oxidation mechanism.


Asunto(s)
Lipoproteínas , NADP , Proteínas de Plantas , Stevia/química , Superóxidos , Lipoproteínas/química , Lipoproteínas/metabolismo , NADP/química , NADP/metabolismo , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Superóxidos/química , Superóxidos/metabolismo
4.
BMC Complement Altern Med ; 17(1): 540, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258552

RESUMEN

BACKGROUND: Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. METHODS: By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. RESULTS: In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX isoforms isolated from the central nervous system tissue (amygdala, hippocampus, spinal cord) was revealed. Stevia exhibits an antistress, membrane-stabilizing role reducing the level of total fractions of NOX isoforms from central nervous system tissues and regulates NADPH-dependent O2- -producing activity. CONCLUSION: Generally, in condition of metabolic disorders caused by intensive consumption of dietary fructose Stevia leaves contributes to the control of neuronal synaptic plasticity possibly influencing the conjugated NOX-specific targets.


Asunto(s)
Química Encefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Diterpenos de Tipo Kaurano/farmacología , Fructosa/efectos adversos , Glucósidos/farmacología , NADPH Oxidasas/análisis , Plasticidad Neuronal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Encéfalo/citología , Encéfalo/enzimología , Azúcares de la Dieta/efectos adversos , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/metabolismo , NADPH Oxidasas/metabolismo , Ratas , Stevia
5.
Opt Lett ; 37(17): 3633-5, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22940973

RESUMEN

We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA